亚洲精品成人网久久久久久,老熟妇仑乱一区二区视頻,精品久久国产字幕高潮,全黄激性性视频,动漫精品一区二区三区在线观看

您好 歡迎來到磨料磨具網  | 免費注冊
 |   | 聯系我們  | 幫助中心
遠發信息:磨料磨具行業的一站式媒體平臺磨料磨具行業的一站式媒體平臺
手機資訊手機資訊
官方微信官方微信

雙面研磨技術研究現狀與發展趨勢

關鍵詞 研磨|2024-06-11 09:13:13|來源 半導體在線
摘要 摘要隨著半導體制造,光學制造等領域的飛速發展,對晶圓,光學窗口等零件的需求逐漸增大,雙面研磨工藝作為平面高效高精度加工工藝,被廣泛應用于相關零件的制造。雙面研磨技術及裝備的研究在近...

       摘 要
       隨著半導體制造,光學制造等領域的飛速發展,對晶圓,光學窗口等零件的需求逐漸增大,雙面研磨工藝作為平面高 效高精度加工工藝,被廣泛應用于相關零件的制造。雙面研磨技術及裝備的研究在近二十年來得到了飛速的發展,國內外相 關學者從理論層面對雙面研磨的工藝過程進行分析,探索材料去除機理,分析工件加工過程中表面的壓力分布,建立工件與 研磨盤的相對運動速度模型;根據提出的理論模型對雙面研磨工藝進行優化,實現對不同材料的精密加工;根據理論模型和 工藝優化的結果,對雙面研磨裝備進行優化,實現更高精度和穩定性的加工。調研了目前國內外雙面研磨裝備,從機床功能, 加工精度及穩定性等方面分析了目前國內與國外裝備的差距,為后續國內雙面研磨裝備的改進提供了參考。此外,就雙面研 磨技術及裝備的發展方向進行了展望,提出了在未來向智能化發展的思路。

       引言

       隨著光(guang)(guang)學(xue)、微電子、通訊領域的(de)高速發展,對(dui) 于(yu)構件的(de)要求逐漸提升,針對(dui)光(guang)(guang)學(xue)窗口,晶(jing)圓(yuan),手 機屏幕(mu)等(deng)核(he)心(xin)關(guan)鍵部件的(de)需求也隨之增多(duo),而(er)對(dui)于(yu)工(gong)(gong)件的(de)平面(mian)(mian)(mian)(mian)度、平行度、表面(mian)(mian)(mian)(mian)粗糙度及表面(mian)(mian)(mian)(mian)/亞(ya)表 面(mian)(mian)(mian)(mian)損傷等(deng)要求也越(yue)來越(yue)高,雙面(mian)(mian)(mian)(mian)研磨工(gong)(gong)藝(yi)由于(yu)其加 工(gong)(gong)后具有較好(hao)的(de)表面(mian)(mian)(mian)(mian)質量廣泛應用于(yu)光(guang)(guang)學(xue)元件加 工(gong)(gong),集成(cheng)電路制造等(deng)相關(guan)產(chan)業。

       研磨(mo)技(ji)(ji)術(shu)的歷史悠久,可以追(zhui)溯至 18 世(shi)紀 30 年代(dai)(dai),廣(guang)泛(fan)應用(yong)(yong)于鐘表(biao)、自行車、縫紉機和(he)槍械等 零件,隨之近代(dai)(dai)工業的發(fa)展,到(dao)(dao) 1920 年前后,出現 了雙(shuang)面(mian)研磨(mo)機床用(yong)(yong)來加(jia)工兩平行平面(mian),20 世(shi)紀 70年代(dai)(dai)末(mo),采用(yong)(yong)微處理機的數(shu)字控(kong)制(zhi)和(he)適(shi)應控(kong)制(zhi)等技(ji)(ji) 術(shu)在機床上得(de)到(dao)(dao)了廣(guang)泛(fan)的應用(yong)(yong),使(shi)得(de)雙(shuang)面(mian)研磨(mo)技(ji)(ji)術(shu) 應用(yong)(yong)成本效(xiao)率以得(de)到(dao)(dao)了很大的改(gai)善(shan),從(cong)而其得(de)到(dao)(dao)廣(guang) 泛(fan)推廣(guang)應用(yong)(yong)。 

       雙面研磨工藝來源于單面研磨拋光工(gong)(gong)(gong)(gong)(gong)藝(yi),均是 實(shi)現(xian)平面(mian)(mian)零件(jian)高(gao)校高(gao)精度(du)加工(gong)(gong)(gong)(gong)(gong)的(de)工(gong)(gong)(gong)(gong)(gong)藝(yi)。其(qi)材料去除 與方式與單(dan)(dan)面(mian)(mian)研磨(mo)工(gong)(gong)(gong)(gong)(gong)藝(yi)相(xiang)近,即通過磨(mo)粒在(zai)(zai)工(gong)(gong)(gong)(gong)(gong)件(jian)表 面(mian)(mian)的(de)劃擦實(shi)現(xian)材料的(de)去除;工(gong)(gong)(gong)(gong)(gong)件(jian)與研磨(mo)盤的(de)相(xiang)對運 動軌跡極其(qi)相(xiang)似。雙面(mian)(mian)研磨(mo)加工(gong)(gong)(gong)(gong)(gong)與單(dan)(dan)面(mian)(mian)研磨(mo)加工(gong)(gong)(gong)(gong)(gong)也 存在(zai)(zai)差異,加工(gong)(gong)(gong)(gong)(gong)過程(cheng)中,工(gong)(gong)(gong)(gong)(gong)件(jian)無(wu)需裝夾,僅需將(jiang)工(gong)(gong)(gong)(gong)(gong) 件(jian)放置在(zai)(zai)游星(xing)輪內,由(you)上盤提供研磨(mo)壓力,工(gong)(gong)(gong)(gong)(gong)件(jian)在(zai)(zai) 上下盤間做(zuo)行星(xing)運動。

        雙面研(yan)磨(mo)(mo)工藝如圖 1 所示,上(shang)下研(yan)磨(mo)(mo)盤(pan)反向轉 動(dong)(dong),工件在(zai)上(shang)下研(yan)磨(mo)(mo)盤(pan)之間,在(zai)游(you)(you)星輪(lun)(lun)的帶動(dong)(dong)下, 隨游(you)(you)星輪(lun)(lun)做(zuo)公轉和自轉運動(dong)(dong),游(you)(you)星輪(lun)(lun)在(zai)與(yu)(yu)齒(chi)(chi)圈(quan)和太 陽輪(lun)(lun)齒(chi)(chi)輪(lun)(lun)的嚙(nie)合(he)作用(yong)下,做(zuo)自轉和圍繞(rao)太陽輪(lun)(lun)中(zhong)(zhong)心 的公轉運動(dong)(dong)。加工過程中(zhong)(zhong),上(shang)盤(pan)浮動(dong)(dong),并(bing)提(ti)供壓(ya)(ya)力(li)(li), 其最大壓(ya)(ya)力(li)(li)為其自身(shen)重力(li)(li),在(zai)壓(ya)(ya)力(li)(li)與(yu)(yu)相對運動(dong)(dong)的作 用(yong)下工件表面材料被去(qu)除。

image.png

        雖然單面的研磨工藝能獲得較好的平面度和表面質量,然而其加工過程中,需要在工件上 施加壓力,目前往往采用石蠟粘接的方式,在工 件背部加壓,然而隨著對工件精度要求的提升, 單面加工的平行度以及加工后工件的變形無法滿 足加工要求。相比于單面研磨加工,雙面研磨工 藝具有以下優勢:1) 雙面同時加工,其加工效率 提升一倍,加工過程中,常采用多個工件同時加 工,且加工后的一致性較好 ;2) 上下兩個面同 時加工,無需裝夾,能夠保證加工后兩個面較好 的平行度;3) 針對剛性較差的工件,雙面加工可 以減小應力釋放導致的工件的變形,而且加工中 無需使用夾具裝夾,使得工件自由狀態下去除材 料,防止了加工過程中的裝夾變形,上下表面同 時引入加工應力,減小加工應力造成工件的變形 如圖 2 所示。因此,雙面研磨比單面研磨更 適合應用于大批量加工平面零件。雙面研磨根據磨粒種類的不同可以分為固結磨料雙面研磨和游 離磨料雙面研磨,固結磨料雙面研磨中,采用 固結磨料研磨盤,將金剛石磨粒燒結在研磨盤上, 加工過程中需加入水,起到冷卻和清洗的作用。由于其磨粒分布均勻,因此具有材料去除 率穩定,亞表面損傷少等優點。游離磨料雙 面研磨采用鑄鐵盤配合氧化鋁,碳化硅,金剛石 等游離磨料進行加工,由于鑄鐵盤剛性好,面形 易保持,所以加工后較容易獲得較好的面形精度, 通過采用不同粒徑不同濃度的磨料進行加工,能 夠實現較高的材料去除率。

image.png

       目前雙面研磨工藝的研究進展如圖 3 所示,主 要是從脆塑性的材料去除機理開展研究,針對藍寶 石、光學玻璃、碳化硅、單晶硅等材料,分別 研究其在固結磨料和游離磨料雙面研磨的方式下工 件表面材料的去除機理。針對工件在雙面研磨中的 運動,建立運動學模型,計算工件與研磨盤的相對 運動速度及軌跡,實現對工件表面材料去除均勻性 的優化。根據理論模型及不同的材料屬性,對雙面 研磨的工藝參數開展優化研究。針對目前雙面研磨機床存在的問題,展開優化設計,針對壓力加載方 式,速比選擇,控制系統設計等方面開展研究。此外,近年來,雙面研磨工藝也被應用于弱剛性構 件的加工,在加工過程中,由于雙面同時去除材料, 使得工件內部殘余應力對稱釋放,上下兩個面的加 工應力引入情況一致,從而減小了工件加工過程中 應力引起的變形。然而,弱剛性構件的材料普遍為 塑性金屬材料,而針對此類材料的加工主要存在兩 個問題:1) 采用游離磨粒研磨時,工件表面嵌入嚴 重;2) 采用固結磨料研磨,研磨盤堵塞嚴重。因此, 相關學者針對塑性金屬材料的雙面研磨工藝進行了探索。

image.png

       針對雙面研磨工藝研究,日本金澤大學的 HASHIMOTO 團隊建立了雙面研磨過程中工件的 力學模型,計算了工件的材料去除及工件的運動 情況;韓國漢陽大學 KIM 團隊采用游離磨料和固 結磨料研磨墊雙面研磨加工藍寶石,石英玻璃等 硬脆晶體材料,分析其材料去除機理,并對相關 工藝進行優化。國內相關研究團隊也針對雙面研 磨工藝開展了大量研究,華僑大學徐西鵬教授團 隊采用固結磨料雙面研磨工藝加工藍寶石工件, 探究其材料去除機理及材料去除均勻性,并對加 工過程中研磨盤的磨損進行研究;廣東工業大學 閆秋生教授團隊針對鈦酸鋇等軟脆晶體的雙面研 磨工藝開展研究。中國有色金屬研究院研究團隊 針對集成電路中使用的單晶硅晶圓的雙面研磨工 藝開展研究,實現表面材料均勻去除。大連理工 大學康仁科教授團隊對藍寶石雙面研磨工藝開展 研究,并開發針對藍寶石材料的雙面研磨機床, 此外,創造性地提出采用固結磨料雙面研磨工藝 加工純銅弱剛性構件,并探究了工件表面凹凸面 形的形成機理及平行度演化趨勢,實現了對弱剛 性構件的高精度加工。浙江工業大學袁巨龍教授 團隊針對硬脆材料雙面研磨加工的材料去除機理 進行研究,并將雙面研磨工藝推廣到軸承中圓柱 滾子的加工。近年來,國內外針對雙面研磨技術 的研究日趨完善,其加工工藝中的科學問題大部 分得到了解決,但是目前雙面研磨技術的發展仍 受到一定制約,因此,需要對雙面研磨技術的研 究工作進行總結,對制約技術發展的問題進行梳 理,對技術未來的發展方向進行展望。鑒于此, 需要通過總結近 20 年來國內外各研究團隊在雙 面研磨領域的研究工作,綜述雙面研磨理論、工 藝及裝備等方面的相關研究,系統性地揭示了雙 面研磨技術的研究現狀與面臨的挑戰,并通過分 析展望雙面研磨技術的未來發展方向與趨勢。

       本(ben)文以(yi)(yi)雙(shuang)(shuang)(shuang)面(mian)(mian)研(yan)磨(mo)工(gong)藝(yi)(yi)為主要研(yan)究(jiu)(jiu)內容,闡述、 分(fen)析并(bing)展望(wang)了目(mu)前雙(shuang)(shuang)(shuang)面(mian)(mian)研(yan)磨(mo)裝(zhuang)備與(yu)工(gong)藝(yi)(yi)技術,包(bao)括材料去除機理(li)(li),雙(shuang)(shuang)(shuang)面(mian)(mian)研(yan)磨(mo)過(guo)程中(zhong)的理(li)(li)論模型, 雙(shuang)(shuang)(shuang)面(mian)(mian)研(yan)磨(mo)工(gong)藝(yi)(yi)優化,以(yi)(yi)及雙(shuang)(shuang)(shuang)面(mian)(mian)研(yan)磨(mo)機床(chuang)等(deng)相(xiang)關研(yan)究(jiu)(jiu)。

       1 雙面研磨理論及建模

       雙(shuang)面研(yan)磨工(gong)(gong)藝中(zhong)(zhong),采用游(you)離磨料(liao)和固結磨料(liao)加 工(gong)(gong)時,工(gong)(gong)件表面的(de)(de)材(cai)料(liao)去除(chu)(chu)呈(cheng)現(xian)(xian)出不(bu)同的(de)(de)規(gui)律,因 此,國內外(wai)學者(zhe)(zhe)針(zhen)對雙(shuang)面研(yan)磨過程中(zhong)(zhong)的(de)(de)材(cai)料(liao)去除(chu)(chu)機(ji) 理展開研(yan)究。在該工(gong)(gong)藝中(zhong)(zhong),材(cai)料(liao)去除(chu)(chu)規(gui)律符合 Preston 方程,即材(cai)料(liao)去除(chu)(chu)率與加載壓(ya)力和相(xiang)對運動(dong) 速(su)度成正(zheng)比,因此,相(xiang)關(guan)學者(zhe)(zhe)針(zhen)對接觸壓(ya)力和相(xiang)對 運動(dong)速(su)度進行了理論研(yan)究,實現(xian)(xian)對雙(shuang)面研(yan)磨工(gong)(gong)藝的(de)(de) 理論化指導。

       1.1 材料去除機理 

       傳統的(de)(de)雙面(mian)研磨(mo)(mo)工(gong)(gong)(gong)(gong)藝主要是(shi)針對于硬脆材料(liao)(liao) 的(de)(de)加(jia)工(gong)(gong)(gong)(gong),采用鑄鐵(tie)盤加(jia)游(you)離(li)磨(mo)(mo)料(liao)(liao)的(de)(de)方式進行(xing)加(jia)工(gong)(gong)(gong)(gong), 通過(guo)改變磨(mo)(mo)粒粒徑,能夠實現不同(tong)(tong)效率,不同(tong)(tong)表 面(mian)粗糙度工(gong)(gong)(gong)(gong)件(jian)的(de)(de)加(jia)工(gong)(gong)(gong)(gong),由于其加(jia)工(gong)(gong)(gong)(gong)過(guo)程(cheng)中極易發 生磨(mo)(mo)粒聚集的(de)(de)現象,無(wu)法保證磨(mo)(mo)粒的(de)(de)均(jun)勻分(fen)布, 因此提(ti)出(chu)了(le)固結(jie)磨(mo)(mo)料(liao)(liao)雙面(mian)研磨(mo)(mo)加(jia)工(gong)(gong)(gong)(gong)方法,將磨(mo)(mo)粒 固結(jie)在研磨(mo)(mo)盤上,保證了(le)加(jia)工(gong)(gong)(gong)(gong)過(guo)程(cheng)中磨(mo)(mo)粒分(fen)布的(de)(de)均(jun)勻性。 

       雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)磨(mo)(mo)(mo)(mo)加(jia)工(gong)(gong)(gong)(gong)主要是通過磨(mo)(mo)(mo)(mo)粒(li)(li)在(zai)工(gong)(gong)(gong)(gong)件(jian)(jian)表(biao)面(mian)(mian)(mian)的(de)(de)(de)(de)(de)(de)劃(hua) 擦實現(xian)材(cai)(cai)(cai)料(liao)的(de)(de)(de)(de)(de)(de)去(qu)(qu)(qu)除(chu)(chu),而在(zai)加(jia)工(gong)(gong)(gong)(gong)硬脆材(cai)(cai)(cai)料(liao)時(shi),其加(jia)工(gong)(gong)(gong)(gong) 后會出現(xian)裂紋,劃(hua)痕(hen)等缺陷,因此,需(xu)要研(yan)(yan)究加(jia)工(gong)(gong)(gong)(gong) 過程(cheng)的(de)(de)(de)(de)(de)(de)塑性去(qu)(qu)(qu)除(chu)(chu)和(he)(he)脆性去(qu)(qu)(qu)除(chu)(chu)的(de)(de)(de)(de)(de)(de)現(xian)象(xiang),闡明不同工(gong)(gong)(gong)(gong)藝(yi)參數(shu)下的(de)(de)(de)(de)(de)(de)材(cai)(cai)(cai)料(liao)去(qu)(qu)(qu)除(chu)(chu)機理。采用游離磨(mo)(mo)(mo)(mo)粒(li)(li)加(jia)工(gong)(gong)(gong)(gong)時(shi),工(gong)(gong)(gong)(gong) 件(jian)(jian)表(biao)面(mian)(mian)(mian)發生磨(mo)(mo)(mo)(mo)粒(li)(li)的(de)(de)(de)(de)(de)(de)二(er)(er)體(ti)(ti)、三(san)體(ti)(ti)延(yan)性磨(mo)(mo)(mo)(mo)損(sun)加(jia)工(gong)(gong)(gong)(gong), 張克華(hua)等建(jian)(jian)立二(er)(er)體(ti)(ti)和(he)(he)三(san)體(ti)(ti)摩(mo)擦磨(mo)(mo)(mo)(mo)損(sun)和(he)(he)延(yan)性研(yan)(yan)磨(mo)(mo)(mo)(mo) 加(jia)工(gong)(gong)(gong)(gong)的(de)(de)(de)(de)(de)(de)材(cai)(cai)(cai)料(liao)綜合去(qu)(qu)(qu)除(chu)(chu)率計(ji)算模型,計(ji)算雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)磨(mo)(mo)(mo)(mo)加(jia) 工(gong)(gong)(gong)(gong)過程(cheng)中的(de)(de)(de)(de)(de)(de)材(cai)(cai)(cai)料(liao)去(qu)(qu)(qu)除(chu)(chu)量。在(zai)此基礎(chu)上,劉道標等建(jian)(jian)立藍寶石(shi)襯底(di)雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)磨(mo)(mo)(mo)(mo)亞(ya)表(biao)面(mian)(mian)(mian)損(sun)傷層深(shen)(shen)度與(yu)表(biao)面(mian)(mian)(mian) 劃(hua)痕(hen)深(shen)(shen)度之間的(de)(de)(de)(de)(de)(de)理論模型,并通過對雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)磨(mo)(mo)(mo)(mo)后的(de)(de)(de)(de)(de)(de) 襯底(di)晶片進行亞(ya)表(biao)面(mian)(mian)(mian)觀察,得(de)到(dao)亞(ya)表(biao)面(mian)(mian)(mian)損(sun)傷層隨(sui)深(shen)(shen) 度變化隨(sui)著深(shen)(shen)度的(de)(de)(de)(de)(de)(de)增(zeng)大呈遞減趨勢(shi)的(de)(de)(de)(de)(de)(de)規律。此外(wai), 研(yan)(yan)磨(mo)(mo)(mo)(mo)液分布(bu)的(de)(de)(de)(de)(de)(de)均勻性以(yi)及(ji)磨(mo)(mo)(mo)(mo)粒(li)(li)的(de)(de)(de)(de)(de)(de)聚(ju)集(ji)(ji)現(xian)象(xiang)均會對工(gong)(gong)(gong)(gong) 件(jian)(jian)的(de)(de)(de)(de)(de)(de)表(biao)面(mian)(mian)(mian)質量和(he)(he)材(cai)(cai)(cai)料(liao)去(qu)(qu)(qu)除(chu)(chu)率產(chan)生影響, KLAMECKI[29]建(jian)(jian)立材(cai)(cai)(cai)料(liao)去(qu)(qu)(qu)除(chu)(chu)模型,得(de)出工(gong)(gong)(gong)(gong)件(jian)(jian)表(biao)面(mian)(mian)(mian)由 于研(yan)(yan)磨(mo)(mo)(mo)(mo)液的(de)(de)(de)(de)(de)(de)分布(bu)以(yi)及(ji)磨(mo)(mo)(mo)(mo)粒(li)(li)的(de)(de)(de)(de)(de)(de)聚(ju)集(ji)(ji)導致的(de)(de)(de)(de)(de)(de)材(cai)(cai)(cai)料(liao)去(qu)(qu)(qu)除(chu)(chu)差異。 

       采用(yong)固結磨(mo)(mo)(mo)(mo)料(liao)(liao)(liao)加(jia)工時,由于(yu)磨(mo)(mo)(mo)(mo)粒固著在研磨(mo)(mo)(mo)(mo)墊 或(huo)研磨(mo)(mo)(mo)(mo)盤上,在加(jia)工過(guo)程中僅存在二體摩擦磨(mo)(mo)(mo)(mo)損,此時,材(cai)料(liao)(liao)(liao)表面的(de)(de)脆性去除(chu)(chu)和(he)(he)塑性去除(chu)(chu)主要 由于(yu)壓(ya)強的(de)(de)不(bu)同導致(zhi)。MOON 等對(dui)玻(bo)璃(li)和(he)(he)藍(lan)寶石(shi) 材(cai)料(liao)(liao)(liao)固結磨(mo)(mo)(mo)(mo)料(liao)(liao)(liao)研磨(mo)(mo)(mo)(mo)的(de)(de)材(cai)料(liao)(liao)(liao)去除(chu)(chu)機(ji)理進行研究,通(tong)過(guo) 研磨(mo)(mo)(mo)(mo)墊凸起(qi)(qi)不(bu)同的(de)(de)形狀(zhuang),對(dui)其加(jia)工玻(bo)璃(li)和(he)(he)藍(lan)寶石(shi)的(de)(de) 性能進行分析(xi),研究表明不(bu)規則的(de)(de)凸起(qi)(qi)形狀(zhuang)更適(shi)合 加(jia)工玻(bo)璃(li)和(he)(he)藍(lan)寶石(shi)材(cai)料(liao)(liao)(liao)。 

       針對各項(xiang)異性(xing)(xing)材料的(de)(de)(de)加(jia)(jia)(jia)工(gong),由于工(gong)件各個晶(jing)面(mian)(mian) 的(de)(de)(de)物理及力學性(xing)(xing)能存(cun)在較(jiao)大差異,因此(ci)在加(jia)(jia)(jia)工(gong)過程(cheng) 中磨粒(li)的(de)(de)(de)嵌入深度(du)(du)也(ye)會(hui)(hui)(hui)發生(sheng)變(bian)化,從而(er)(er)改(gai)變(bian)材料去(qu) 除(chu)(chu)的(de)(de)(de)方式(shi)。WANG 等(deng)研(yan)究了雙面(mian)(mian)研(yan)磨藍寶石四個 不(bu)同(tong)晶(jing)面(mian)(mian)的(de)(de)(de)材料去(qu)除(chu)(chu)機理,并(bing)比較(jiao)了加(jia)(jia)(jia)工(gong)后不(bu)同(tong)晶(jing) 面(mian)(mian)的(de)(de)(de)材料去(qu)除(chu)(chu)率和表(biao)(biao)面(mian)(mian)粗(cu)糙度(du)(du)。針對與研(yan)磨液會(hui)(hui)(hui)發生(sheng)反(fan)應的(de)(de)(de)材料加(jia)(jia)(jia)工(gong),工(gong)件表(biao)(biao) 面(mian)(mian)會(hui)(hui)(hui)生(sheng)成一層(ceng)反(fan)應層(ceng),當磨粒(li)的(de)(de)(de)嵌入深度(du)(du)小于該層(ceng) 厚度(du)(du)時,會(hui)(hui)(hui)呈現出塑性(xing)(xing)去(qu)除(chu)(chu)的(de)(de)(de)狀(zhuang)態,加(jia)(jia)(jia)工(gong)表(biao)(biao)面(mian)(mian)不(bu)會(hui)(hui)(hui) 產生(sheng)裂(lie)紋等(deng)脆性(xing)(xing)缺陷(xian),而(er)(er)隨著(zhu)磨粒(li)嵌入深度(du)(du)的(de)(de)(de)增加(jia)(jia)(jia), 磨粒(li)直接與基體接觸(chu),會(hui)(hui)(hui)在基體表(biao)(biao)面(mian)(mian)發生(sheng)脆性(xing)(xing)去(qu)除(chu)(chu), 此(ci)時,在加(jia)(jia)(jia)工(gong)表(biao)(biao)面(mian)(mian)能夠發現較(jiao)多的(de)(de)(de)裂(lie)紋,如圖(tu) 4 所示。

image.png

       1.2 面形形成及演化機理 

       在雙面(mian)(mian)研磨(mo)中,加工后工件的面(mian)(mian)形主要由工 件不同位置的材料(liao)去除(chu)(chu)率決定。其(qi)中,對(dui)(dui)工件表(biao) 面(mian)(mian)的材料(liao)去除(chu)(chu)率起決定性作(zuo)用的參數為加載的 壓力和工件與(yu)研磨(mo)盤的相(xiang)對(dui)(dui)運動速度(du),因此,國 內(nei)外相(xiang)關學者針對(dui)(dui)壓力加載和工件與(yu)研磨(mo)盤間 的相(xiang)對(dui)(dui)運動開展了大量的理(li)論研究(jiu),建立了理(li)論模型,計(ji)算(suan)其(qi)分布趨勢,從而(er)闡(chan)明面(mian)(mian)形的形成及演(yan)化機理(li)。 

       1.2.1 壓力加載模型 

        在雙面研磨中,影響材料去除的關鍵因素是工 件表面的壓力分布和工件與研磨盤的相對運動速 度。加載壓力作為影響雙面研磨材料去除的關鍵參 數,其在工件表面的分布影響工件的材料去除。在 雙面研磨機床上,上研磨盤通過萬向節連接在氣缸 上,使得加工過程中上研磨盤能夠發生小角度的偏 擺,以適應不同厚度工件的加工。工件表面受到的 壓力由上研磨盤的重力提供,目前無法實現對工件 表面接觸壓力的分布情況進行測量,因此,為準確 預測工件表面的材料去除,需要建立模型計算工件 表面的壓力分布。在研磨壓力作用下,工件和研磨 盤均會發生變形,從而影響工件表面的壓強分布,              HASHIMOTO 等建立了工(gong)(gong)件表面壓力分布的(de)理 論模型(xing),基于如圖(tu)(tu) 5 所示的(de)彈簧模型(xing)計(ji)算工(gong)(gong)件與研 磨盤接觸的(de)壓強(qiang)分布,采(cai)用有限(xian)元(yuan)模型(xing)中的(de)殼體(ti)特 征來計(ji)算工(gong)(gong)件的(de)塑(su)性變形,得到了工(gong)(gong)件上下表面的(de) 壓強(qiang)分布如圖(tu)(tu) 6 所示。

image.png

       雖然(ran)其考(kao)慮(lv)了工(gong)件(jian)與研磨(mo)(mo)盤的(de)(de)(de)變(bian)形(xing),但是,在(zai) 加工(gong)過(guo)程中工(gong)件(jian)表面(mian)(mian)的(de)(de)(de)壓(ya)強分(fen)布(bu)會(hui)受到研磨(mo)(mo)拋(pao)光(guang)(guang)液 的(de)(de)(de)流(liu)場壓(ya)力(li)(li)的(de)(de)(de)影響(xiang)(xiang),魏紅波等考(kao)慮(lv)雙(shuang)面(mian)(mian)研磨(mo)(mo)拋(pao)光(guang)(guang) 中的(de)(de)(de)流(liu)場壓(ya)力(li)(li)分(fen)布(bu)對工(gong)件(jian)上下(xia)表面(mian)(mian)壓(ya)力(li)(li)的(de)(de)(de)影響(xiang)(xiang),建 立了雙(shuang)面(mian)(mian)拋(pao)光(guang)(guang)工(gong)藝中晶片上下(xia)表面(mian)(mian)的(de)(de)(de)壓(ya)力(li)(li)分(fen)布(bu)模 型,獲得了晶片和拋(pao)光(guang)(guang)墊(dian)表面(mian)(mian)的(de)(de)(de)速度(du)分(fen)布(bu)關(guan)系,分(fen) 析(xi)了自由晶片在(zai)拋(pao)光(guang)(guang)過(guo)程中的(de)(de)(de)運動狀態以及在(zai)壓(ya)力(li)(li) 荷載及轉矩平衡時晶片上下(xia)表面(mian)(mian)的(de)(de)(de)平均壓(ya)力(li)(li)分(fen)布(bu), 如(ru)圖 7 所示,并對各個研磨(mo)(mo)拋(pao)光(guang)(guang)工(gong)藝參(can)數對壓(ya)力(li)(li)分(fen) 布(bu)的(de)(de)(de)影響(xiang)(xiang)進行了分(fen)析(xi)。

image.png

       針對游離磨料研磨拋光過程中,工件與拋光墊 間的接觸壓力,庫黎明等針對 300 mm 硅片雙面 研磨拋光工藝中表面壓力分布進行研究,研究中假設工件處于“懸浮”狀態,即工件上下表面均有拋 光液薄層。通過工藝實驗驗證,發現當硅片與拋光 墊間為固-液混合接觸時,其表面粗糙度能達到最優 水平。LI 等分析了雙面拋光工藝中工件表面的 壓力分布,并通過有限元仿真軟件對不同條件下的 表面壓力分布進行仿真分析,并通過實驗分析工藝 參數對壓力分布穩定性和表面質量的影響。然而上 述研究并未將優化的結果與工件的面形精度建立聯 系,難以通過計算結果實現高面形精度的加工。此 外,上述研究建立的理論模型及有限元仿真模型, 均是對工件表面的壓強分布進行分析,然而缺乏針 對工件與研磨盤的接觸狀態的分析。針對以上問題, PAN 等考慮雙面研磨工藝中工件與研磨盤的接 觸狀態,建立了工件平行度的演化模型如圖 8 所 示,指出工件在雙面研磨過程中,平行度會逐漸改善,并最終達到一個穩定水平,此外,其對片間的厚度均勻性開展研究,結果表明隨著同時加工工件數量的增加,片間的厚度均勻性越好。

image.png

       1.2.2 工件與研磨盤相對運動模型 

       在(zai)加工(gong)(gong)(gong)過程中,工(gong)(gong)(gong)件(jian)在(zai)研(yan)磨(mo)盤(pan)(pan)上做(zuo)行星運(yun)(yun)動(dong)(dong)如 圖(tu) 9 所(suo)示,因此,工(gong)(gong)(gong)件(jian)表面不同半徑處的相(xiang)對(dui)運(yun)(yun)動(dong)(dong) 速度存在(zai)差(cha)異(yi),從而(er)導致了工(gong)(gong)(gong)件(jian)表面材(cai)料去(qu)除的不 均(jun)勻,國內外(wai)學者(zhe)針對(dui)工(gong)(gong)(gong)件(jian)與研(yan)磨(mo)盤(pan)(pan)間的相(xiang)對(dui)運(yun)(yun)動(dong)(dong) 模型開展了廣泛的研(yan)究。

image.png

       目前建立的運動學模型主要分為以下兩種:1)  工件上一點相對于研磨盤的運動模型;2) 研磨盤上一點相對于工件的運動學模型。為定量衡量工件在 加工過程中相對運動軌跡分布的均勻性,WANG  等提出采用標準差變異系數來定量評價工件與 研磨盤相對運動軌跡分布的均勻性,并通過該參數 優化工藝加工藍寶石工件,加工后,工件的總厚度變 化值為 5.29 μm。但是其在加工過程中并未針對雙面 研磨加工后工件的面形進行分析,無法實現對工件面 形的控制。LAI 等研究了雙面研磨過程中由于工 件與研磨盤間的相對運動造成研磨盤非均勻磨損的 問題,建立了雙面研磨運動學模型,基于軌跡密度分 析研磨盤磨損的均勻性,通過藍寶石基片雙面研磨實 驗對其進行驗證,最終通過調整工藝參數實現研磨盤 的均勻磨損。然而,研磨盤磨損對工件的面形的影響 并未說明,工件面形的形成機理仍需探索。 

       針對(dui)工(gong)(gong)件(jian)(jian)(jian)與研(yan)(yan)(yan)磨(mo)(mo)盤(pan)的(de)(de)(de)(de)(de)相對(dui)運(yun)(yun)(yun)(yun)動(dong)軌跡(ji)(ji)均(jun)勻性的(de)(de)(de)(de)(de)問 題,國內外學者在改(gai)變(bian)傳動(dong)比(bi)、計算(suan)(suan)軌跡(ji)(ji)形(xing)(xing)狀(zhuang)合分 布密度等方(fang)(fang)(fang)面(mian)(mian)展(zhan)開了大(da)量的(de)(de)(de)(de)(de)研(yan)(yan)(yan)究,提出通(tong)(tong)過改(gai) 變(bian)傳動(dong)比(bi)的(de)(de)(de)(de)(de)方(fang)(fang)(fang)式實(shi)現游(you)星(xing)輪(lun)上各點相對(dui)于研(yan)(yan)(yan)磨(mo)(mo)盤(pan)運(yun)(yun)(yun)(yun) 動(dong)軌跡(ji)(ji)的(de)(de)(de)(de)(de)均(jun)勻分布,并通(tong)(tong)過計算(suan)(suan)工(gong)(gong)件(jian)(jian)(jian)與研(yan)(yan)(yan)磨(mo)(mo)盤(pan) 相對(dui)運(yun)(yun)(yun)(yun)動(dong)軌跡(ji)(ji)的(de)(de)(de)(de)(de)長度,計算(suan)(suan)工(gong)(gong)件(jian)(jian)(jian)表(biao)面(mian)(mian)不(bu)同區域(yu)的(de)(de)(de)(de)(de)材(cai) 料去除(chu)(chu)厚度如圖 10 所示。通(tong)(tong)過計算(suan)(suan)發(fa)現,雙(shuang)面(mian)(mian)研(yan)(yan)(yan)磨(mo)(mo)過程中,工(gong)(gong)件(jian)(jian)(jian)與研(yan)(yan)(yan)磨(mo)(mo)盤(pan)的(de)(de)(de)(de)(de)相對(dui)運(yun)(yun)(yun)(yun)動(dong)軌跡(ji)(ji)為擺 線(xian),而(er)當工(gong)(gong)件(jian)(jian)(jian)設置在擺線(xian)中間的(de)(de)(de)(de)(de)環帶區域(yu)時,能 夠(gou)實(shi)現工(gong)(gong)件(jian)(jian)(jian)表(biao)面(mian)(mian)材(cai)料的(de)(de)(de)(de)(de)均(jun)勻去除(chu)(chu),并根據 Preston 方(fang)(fang)(fang)程,建(jian)立材(cai)料去除(chu)(chu)特性方(fang)(fang)(fang)程,實(shi)現對(dui)雙(shuang) 面(mian)(mian)研(yan)(yan)(yan)磨(mo)(mo)材(cai)料去除(chu)(chu)的(de)(de)(de)(de)(de)預測(ce)。為揭示相對(dui)運(yun)(yun)(yun)(yun)動(dong)軌跡(ji)(ji) 對(dui)工(gong)(gong)件(jian)(jian)(jian)面(mian)(mian)形(xing)(xing)的(de)(de)(de)(de)(de)影響(xiang),HIROSE 等提出工(gong)(gong)件(jian)(jian)(jian)與研(yan)(yan)(yan) 磨(mo)(mo)盤(pan)相對(dui)運(yun)(yun)(yun)(yun)動(dong)的(de)(de)(de)(de)(de)方(fang)(fang)(fang)向對(dui)工(gong)(gong)件(jian)(jian)(jian)的(de)(de)(de)(de)(de)面(mian)(mian)形(xing)(xing)影響(xiang)較(jiao)大(da),因(yin) 此(ci),通(tong)(tong)過引入相對(dui)運(yun)(yun)(yun)(yun)動(dong)方(fang)(fang)(fang)向使(shi)得(de)工(gong)(gong)件(jian)(jian)(jian)的(de)(de)(de)(de)(de)平(ping)面(mian)(mian)度得(de) 以改(gai)善(shan),加(jia)工(gong)(gong)后,在 200 mm 硅片(pian)上,平(ping)面(mian)(mian)度可 以達到 2.4 μm。然而(er),由于忽略了工(gong)(gong)件(jian)(jian)(jian)在游(you)星(xing)輪(lun) 內的(de)(de)(de)(de)(de)偏心和(he)自(zi)轉運(yun)(yun)(yun)(yun)動(dong),使(shi)得(de)其對(dui)工(gong)(gong)件(jian)(jian)(jian)加(jia)工(gong)(gong)后面(mian)(mian)形(xing)(xing) 的(de)(de)(de)(de)(de)預測(ce)仍不(bu)準確。 

image.png

       工件在游星輪內的偏心和自轉運動是影響工件 面形的關鍵因素,金楊福等發現了雙面研磨 過程中工件會在游星輪內進行自轉。針對工件自 轉的原因,金楊福等通過對雙面拋光過程中晶 片受力狀態進行分析,得出晶片自轉速度和晶片 與游星輪間的摩擦狀態有關。HASHIMOTO等分析了雙面研磨過程中工件與研磨盤間的 摩擦,計算了工件在游星輪不同位置時的摩擦系 數變化,并通過如圖 11 所示單面研磨實驗,測量 工件自轉來驗證計算的摩擦系數,并基于三通道 雙面研磨機,測量上研磨盤扭矩的變化,從而得 到工件與研磨盤間的摩擦系數,并通過單面研磨 實驗對其結果進行驗證。

       雖然(ran)其(qi)針對(dui)(dui)工件(jian)在游(you)星(xing)輪(lun)內(nei)(nei)的(de)(de)自(zi)轉(zhuan)運動展開研(yan)(yan) 究(jiu),但由于(yu)在雙面(mian)(mian)(mian)研(yan)(yan)磨加工過(guo)程中(zhong),工件(jian)被(bei)上(shang)下(xia)研(yan)(yan) 磨盤遮(zhe)擋,無(wu)法測量和控制工件(jian)在游(you)星(xing)輪(lun)內(nei)(nei)的(de)(de)自(zi)轉(zhuan), 上(shang)述研(yan)(yan)究(jiu)通過(guo)單面(mian)(mian)(mian)研(yan)(yan)磨的(de)(de)方式對(dui)(dui)其(qi)建立的(de)(de)模(mo)型(xing)進行 驗證(zheng),且未說明(ming)(ming)該運動對(dui)(dui)工件(jian)面(mian)(mian)(mian)形的(de)(de)影(ying)響規律(lv)。PAN 等考(kao)慮工件(jian)在游(you)星(xing)輪(lun)內(nei)(nei)的(de)(de)偏心和自(zi)轉(zhuan)轉(zhuan)速建立 了(le)工件(jian)相對(dui)(dui)于(yu)研(yan)(yan)磨盤的(de)(de)運動學模(mo)型(xing),闡明(ming)(ming)了(le)雙面(mian)(mian)(mian)研(yan)(yan) 磨工藝中(zhong)凹凸面(mian)(mian)(mian)形的(de)(de)形成(cheng)機理如圖(tu) 12 所(suo)示,并基于(yu) 該理論研(yan)(yan)究(jiu),提出平(ping)行度(du)誤差收(shou)斂(lian)方法,實現工件(jian) 雙面(mian)(mian)(mian)平(ping)面(mian)(mian)(mian)度(du)的(de)(de)收(shou)斂(lian)。

image.png

       1.3 塌邊現象的形成機理 

       塌邊(bian)現象(xiang)是研磨中較為常見(jian)的(de)(de)問題,而雙面(mian)研 磨工(gong)(gong)藝與傳(chuan)統的(de)(de)研磨工(gong)(gong)藝加工(gong)(gong)原理相似,因此(ci)(ci),加 工(gong)(gong)后的(de)(de)工(gong)(gong)件(jian)同樣存(cun)在(zai)(zai)塌邊(bian)的(de)(de)現象(xiang),針對塌邊(bian)現象(xiang)的(de)(de) 形成機理,國內(nei)(nei)外學者展開了研究,FU 等(deng)(deng)提出 了接觸表(biao)面(mian)壓強分(fen)布的(de)(de)理論模型,并通過有限元仿 真得到邊(bian)緣(yuan)(yuan)區域(yu)的(de)(de)接觸壓強,發現工(gong)(gong)件(jian)邊(bian)緣(yuan)(yuan)處(chu)存(cun)在(zai)(zai) 壓力(li)急劇增(zeng)大(da)的(de)(de)現象(xiang)。MURTHY 等(deng)(deng)建立了一(yi)個(ge) 有限元模型對接觸壓強進行分(fen)析(xi),其結果(guo)表(biao)明(ming)(ming)在(zai)(zai)邊(bian) 緣(yuan)(yuan)處(chu),接觸壓強急劇增(zeng)大(da)如(ru)圖 13 所 示(shi) (1psi=6.895 kPa),因此(ci)(ci),在(zai)(zai)邊(bian)緣(yuan)(yuan)處(chu)的(de)(de)材(cai)料(liao)去(qu)(qu)除(chu)比工(gong)(gong) 件(jian)內(nei)(nei)部的(de)(de)材(cai)料(liao)去(qu)(qu)除(chu)更(geng)快,從而造(zao)成了工(gong)(gong)件(jian)面(mian)形的(de)(de)明(ming)(ming) 顯塌陷。

image.png

       然而,在以上模型中,普遍采用理想面形的表 面進行計算,且在模型中,工件是剛性的,但是這 與實際加工過程中的情況不符。此外,研磨墊的粘 彈性被認為是另一個影響塌邊的關鍵因素。MIYAKE 等提出了基于研磨墊粘彈性的塌邊形 成機理,并闡明了對于采用硬度較高的研磨墊,塌 邊現象明顯減小的機理如圖 14 所示。綜上所述,塌邊現象是由于工件邊緣處壓力的 急劇增大導致的,而該現象與工件材料,研磨拋光 墊的屬性等因素有關。 

image.png

       2 雙面研磨工藝及應用

       雙面研磨工藝主要是為了實現工件表面的平面 度、平行度、粗糙度、損傷等指標的改善,而為了 保證工件的平面度和平行度,首先需要保證加工過 程中工件表面材料去除的均勻性,材料去除均勻才 能實現工件平面度的收斂。此外,通過改變工藝參 數,改變磨粒等方式,針對特定材料進行工藝優化, 實現表面質量的提升,從而獲得高精度高表面完整 性的表面。 

       2.1 材料去除均勻性 

       由(you)于(yu)(yu)雙面研(yan)磨工(gong)(gong)藝中,工(gong)(gong)件(jian)各點與研(yan)磨盤的(de)(de)(de)相 對運(yun)(yun)(yun)動(dong)(dong)速度的(de)(de)(de)差異,導(dao)致了(le)(le)工(gong)(gong)件(jian)表面材料(liao)(liao)去(qu)除的(de)(de)(de)非 均(jun)勻(yun)(yun)性(xing),從而導(dao)致加(jia)(jia)工(gong)(gong)后工(gong)(gong)件(jian)的(de)(de)(de)平面度較差,因此, 需要(yao)針對工(gong)(gong)件(jian)表面材料(liao)(liao)去(qu)除均(jun)勻(yun)(yun)性(xing)展(zhan)開研(yan)究。為保 證材料(liao)(liao)去(qu)除均(jun)勻(yun)(yun),首先需要(yao)使(shi)得(de)工(gong)(gong)件(jian)與研(yan)磨盤相對 運(yun)(yun)(yun)動(dong)(dong)軌跡(ji)(ji)均(jun)勻(yun)(yun)。建立(li)了(le)(le)研(yan)磨墊上一磨粒(li)相對于(yu)(yu)工(gong)(gong)件(jian) 的(de)(de)(de)運(yun)(yun)(yun)動(dong)(dong)軌跡(ji)(ji)方程,通(tong)(tong)過運(yun)(yun)(yun)動(dong)(dong)學仿真(zhen),得(de)到了(le)(le)襯底表 面的(de)(de)(de)位(wei)(wei)移。建立(li)了(le)(le)評(ping)價工(gong)(gong)件(jian)與研(yan)磨盤相對運(yun)(yun)(yun)動(dong)(dong)軌 跡(ji)(ji)均(jun)勻(yun)(yun)性(xing)的(de)(de)(de)方法,即(ji)基于(yu)(yu)統計學規律計算(suan)單位(wei)(wei)面積 上的(de)(de)(de)軌跡(ji)(ji)數(shu)量。通(tong)(tong)過改變(bian)加(jia)(jia)工(gong)(gong)工(gong)(gong)藝參數(shu),優化研(yan)磨 軌跡(ji)(ji),使(shi)得(de)工(gong)(gong)件(jian)處于(yu)(yu)擺(bai)線中間的(de)(de)(de)環帶部分,從而使(shi) 得(de)軌跡(ji)(ji)更均(jun)勻(yun)(yun)。加(jia)(jia)工(gong)(gong)后工(gong)(gong)件(jian)總厚度變(bian)化值 (TTV),彎曲(qu) (BOW),翹曲(qu) (WARP) 均(jun)小于(yu)(yu) 15 μm。 

       為(wei)進一(yi)步優(you)化材(cai)料去(qu)(qu)除(chu)(chu)均(jun)(jun)(jun)勻(yun)性(xing)(xing),需要對(dui)(dui)雙面研(yan)(yan)(yan)(yan)(yan)(yan)(yan) 磨(mo)各個參(can)數(shu),如研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)盤(pan)(pan)(pan)與齒(chi)(chi)圈太陽輪(lun)的(de)(de)(de)(de)轉(zhuan)(zhuan)(zhuan)速(su)比,研(yan)(yan)(yan)(yan)(yan)(yan)(yan) 磨(mo)盤(pan)(pan)(pan)轉(zhuan)(zhuan)(zhuan)速(su)等(deng)進行優(you)化。胡曉珍等(deng)通(tong)過(guo)(guo)(guo)分(fen)析(xi)雙面研(yan)(yan)(yan)(yan)(yan)(yan)(yan) 磨(mo)運動,建立(li)了(le)工(gong)件(jian)與研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)盤(pan)(pan)(pan)相對(dui)(dui)運動方(fang)程,并(bing)基(ji) 于(yu) Preston 方(fang)程,建立(li)了(le)材(cai)料去(qu)(qu)除(chu)(chu)模型即研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)均(jun)(jun)(jun)勻(yun)性(xing)(xing) 函數(shu),研(yan)(yan)(yan)(yan)(yan)(yan)(yan)究了(le)不同轉(zhuan)(zhuan)(zhuan)速(su)比對(dui)(dui)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)材(cai)料去(qu)(qu)除(chu)(chu)均(jun)(jun)(jun)勻(yun)性(xing)(xing)的(de)(de)(de)(de) 影(ying)響(xiang)。李穆朗(lang)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)究了(le)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)盤(pan)(pan)(pan)轉(zhuan)(zhuan)(zhuan)速(su)和內外(wai)(wai)齒(chi)(chi)圈轉(zhuan)(zhuan)(zhuan)速(su) 對(dui)(dui)工(gong)件(jian)表面平整度(du)的(de)(de)(de)(de)影(ying)響(xiang),得出研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)盤(pan)(pan)(pan)轉(zhuan)(zhuan)(zhuan)速(su)對(dui)(dui)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo) 去(qu)(qu)除(chu)(chu)速(su)率的(de)(de)(de)(de)影(ying)響(xiang)較內外(wai)(wai)齒(chi)(chi)圈轉(zhuan)(zhuan)(zhuan)速(su)更(geng)為(wei)顯著的(de)(de)(de)(de)結論。在(zai)雙面研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)工(gong)藝中(zhong),加載壓力也是影(ying)響(xiang)材(cai)料去(qu)(qu)除(chu)(chu)的(de)(de)(de)(de) 均(jun)(jun)(jun)勻(yun)性(xing)(xing)的(de)(de)(de)(de)主要因(yin)素。基(ji)于(yu)仿(fang)真(zhen)軟件(jian),對(dui)(dui)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)盤(pan)(pan)(pan)轉(zhuan)(zhuan)(zhuan)速(su), 壓力,以及研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)液(ye)入口數(shu)量對(dui)(dui)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)均(jun)(jun)(jun)勻(yun)性(xing)(xing)的(de)(de)(de)(de)影(ying)響(xiang)規律進行探索。通(tong)過(guo)(guo)(guo)仿(fang)真(zhen)結果進行參(can)數(shu)優(you)化,使(shi)得雙 面研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)工(gong)件(jian)表面材(cai)料去(qu)(qu)除(chu)(chu)均(jun)(jun)(jun)勻(yun)分(fen)布(bu)。加工(gong)過(guo)(guo)(guo)程 中(zhong),研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)盤(pan)(pan)(pan)的(de)(de)(de)(de)磨(mo)損(sun)對(dui)(dui)材(cai)料去(qu)(qu)除(chu)(chu)均(jun)(jun)(jun)勻(yun)性(xing)(xing)也會造成影(ying)響(xiang)。祁(qi)小(xiao)(xiao)苑等(deng)分(fen)析(xi)了(le)光(guang)(guang)學鏡片(pian)在(zai)平面行星式研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)加 工(gong)過(guo)(guo)(guo)程中(zhong)的(de)(de)(de)(de),研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)機(ji)速(su)比對(dui)(dui)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)盤(pan)(pan)(pan)磨(mo)損(sun)均(jun)(jun)(jun)勻(yun)性(xing)(xing)的(de)(de)(de)(de)影(ying) 響(xiang)規律,通(tong)過(guo)(guo)(guo)優(you)化工(gong)藝參(can)數(shu),獲得了(le)厚度(du)一(yi)致性(xing)(xing)小(xiao)(xiao) 于(yu) 2 μm,平行度(du)小(xiao)(xiao)于(yu) 2 μm 的(de)(de)(de)(de)高質量光(guang)(guang)學鏡片(pian)。

       2.2 表面質量 

       目(mu)前,針(zhen)(zhen)對(dui)(dui)(dui)雙(shuang)面(mian)研磨(mo)工(gong)(gong)(gong)藝(yi)優(you)化的(de)(de)研究取得了一(yi) 定(ding)的(de)(de)進(jin)展,針(zhen)(zhen)對(dui)(dui)(dui)硬脆難加工(gong)(gong)(gong)材料(liao),采(cai)用表面(mian)粗(cu)糙度(du)(du), 亞表面(mian)損傷(shang)層(ceng)深(shen)度(du)(du),平(ping)(ping)面(mian)度(du)(du) PV 值,TTV,翹曲, 彎曲等(deng)參數對(dui)(dui)(dui)其表面(mian)質(zhi)量(liang)進(jin)行(xing)評價(jia),通過提出新的(de)(de) 加工(gong)(gong)(gong)策略(lve)并優(you)化參數,實(shi)現(xian)了工(gong)(gong)(gong)件表面(mian)的(de)(de)改善(shan)。針(zhen)(zhen) 對(dui)(dui)(dui)玻璃材料(liao),王朝欽針(zhen)(zhen)對(dui)(dui)(dui)微晶玻璃基板(ban),提出雙(shuang) 面(mian)研磨(mo)加工(gong)(gong)(gong)工(gong)(gong)(gong)藝(yi),并通過試驗研究,得到各工(gong)(gong)(gong)藝(yi)參 數對(dui)(dui)(dui)平(ping)(ping)面(mian)度(du)(du),平(ping)(ping)行(xing)度(du)(du),表面(mian)粗(cu)糙度(du)(du)的(de)(de)影響規律(lv),最 終在直徑 95 mm 的(de)(de)微晶玻璃基板(ban)上,實(shi)現(xian)平(ping)(ping)面(mian)度(du)(du)優(you) 于(yu) 3 μm 的(de)(de)加工(gong)(gong)(gong)。

       在此基礎上,國內外學者針(zhen)對(dui) SiC、單晶(jing)(jing)硅、 藍寶石(shi)等(deng)硬脆難(nan)加(jia)工(gong)材料進行(xing)雙(shuang)面研磨加(jia)工(gong)工(gong)藝進 行(xing)優(you)(you)化。賈軍朋等(deng)探(tan)討工(gong)藝參數對(dui) SiC 襯底(di) TTV 和材料去除(chu)率的(de)影響(xiang),通(tong)過參數優(you)(you)化,獲了材料去 除(chu)率平(ping)均值(zhi)為(wei) 4.86 μm/h、TTV 平(ping)均值(zhi)為(wei) 2.35 μm、 彎(wan)曲度平(ping)均值(zhi)為(wei) 6.03 μm、翹曲度平(ping)均值(zhi)為(wei) 7.6 μm、 粗糙度平(ping)均值(zhi)為(wei) 0.8 nm 的(de) SiC 襯底(di)。ZHANG 等(deng)建立了雙(shuang)面機械研磨的(de)模型,并對(dui)工(gong)件與研磨盤間 的(de)相對(dui)運動進行(xing)分(fen)析,為(wei)獲得分(fen)布(bu)均勻的(de)研磨軌跡(ji), 改變磨粒分(fen)布(bu)范圍,太陽(yang)輪(lun)、齒圈、研磨盤轉速比。采用優(you)(you)化參數加(jia)工(gong)單晶(jing)(jing) SiC 晶(jing)(jing)片,其 TTV 為(wei) 10 μm, 彎(wan)曲為(wei) 15 μm,翹曲為(wei) 15 μm,如(ru)圖 15 所示。 

image.png

       低模態法是獲得較低 TTV 值的最佳方法,即通 過提高上盤、齒圈和中心齒的轉速,減小研磨載荷, 可使晶圓的 TTV 值較低。通過短時間加工,實現 了 TTV 優于 10 μm 的工藝指標。不同的研磨液對加 工過程中的材料去除率和表面粗糙度也會產生影 響。其中,研磨液的 pH 值,溫度和磨粒濃度會對 表面粗糙度造成影響。 

       由于雙面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)與單面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)的加工方式相近,加 工機理(li)一直,因此(ci),有學者針對單面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)與雙面(mian)(mian)(mian)研(yan)(yan)(yan)(yan) 磨(mo)加工工藝(yi)的對比(bi)展(zhan)開研(yan)(yan)(yan)(yan)究(jiu),LI 等比(bi)較(jiao)了單面(mian)(mian)(mian)研(yan)(yan)(yan)(yan) 磨(mo)和雙面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)藍寶石基(ji)片的材料去(qu)(qu)除(chu)率和表面(mian)(mian)(mian)質 量,雙面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)藍寶石基(ji)片材料去(qu)(qu)除(chu)率可達 14.02 nm/min,單面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)后的平行度約(yue)為雙面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo) 工件的 3 倍,如圖 16 所(suo)示。  

image.png

       2.3 塌邊現象的抑制方法 

       而(er)在(zai)雙(shuang)面(mian)(mian)(mian)研磨(mo)(mo)工(gong)(gong)(gong)藝(yi)中(zhong)(zhong),塌邊(bian)(bian)現(xian)象成(cheng)為(wei)(wei)制(zhi)(zhi)約工(gong)(gong)(gong)件(jian)(jian) 平面(mian)(mian)(mian)度提升的(de)瓶頸,與單面(mian)(mian)(mian)研磨(mo)(mo)工(gong)(gong)(gong)藝(yi)不同,雙(shuang)面(mian)(mian)(mian)研 磨(mo)(mo)中(zhong)(zhong)塌邊(bian)(bian)的(de)控制(zhi)(zhi)存在(zai)以(yi)下幾方(fang)面(mian)(mian)(mian)的(de)問題:(1) 雙(shuang)面(mian)(mian)(mian) 同時(shi)加(jia)工(gong)(gong)(gong),無(wu)(wu)(wu)法(fa)(fa)通過在(zai)保持環上施加(jia)更大(da)的(de)壓(ya)力保 證工(gong)(gong)(gong)件(jian)(jian)邊(bian)(bian)緣處壓(ya)力的(de)降低;(2) 雙(shuang)面(mian)(mian)(mian)研磨(mo)(mo)工(gong)(gong)(gong)藝(yi)為(wei)(wei)全 口(kou)徑加(jia)工(gong)(gong)(gong)工(gong)(gong)(gong)藝(yi),無(wu)(wu)(wu)法(fa)(fa)通過控制(zhi)(zhi)工(gong)(gong)(gong)件(jian)(jian)軌(gui)跡等(deng)方(fang)式實現(xian) 塌邊(bian)(bian)現(xian)象的(de)抑(yi)制(zhi)(zhi);(3) 由于工(gong)(gong)(gong)件(jian)(jian)表面(mian)(mian)(mian)的(de)壓(ya)力加(jia)載方(fang) 式采用上研磨(mo)(mo)盤直接(jie)加(jia)壓(ya),無(wu)(wu)(wu)法(fa)(fa)實現(xian)分區加(jia)壓(ya)以(yi)實 現(xian)對塌邊(bian)(bian)現(xian)象的(de)有效抑(yi)制(zhi)(zhi)。 

       針對(dui)單面(mian)研磨中存在(zai)的(de)塌(ta)邊(bian)的(de)現象(xiang),XIE 等提出(chu)外(wai)加保持環(huan)的(de)方式來(lai)防(fang)止塌(ta)邊(bian)現象(xiang),并分別在(zai) 保持環(huan)和晶(jing)圓表(biao)面(mian)施加不同的(de)壓(ya)力(li)(li),從而(er)緩解工件(jian) 邊(bian)緣(yuan)處壓(ya)力(li)(li)急(ji)劇增大的(de)現象(xiang)。 

       該方法(fa)雖然在單面研(yan)磨中有一定的(de)(de)抑制(zhi)效果, 但由(you)于其加(jia)載壓力的(de)(de)不同,難以用于雙面研(yan)磨工藝 中,PAN 等在此基礎上,針對固(gu)結(jie)磨料雙面研(yan)磨 中存(cun)在的(de)(de)塌(ta)(ta)邊現(xian)象,建立了塌(ta)(ta)邊演化的(de)(de)有限元仿真 模型(xing),并提(ti)(ti)出(chu)了外加(jia)犧牲環(huan)的(de)(de)塌(ta)(ta)邊抑制(zhi)方法(fa)如圖 17  所示,通過參數優化,使得(de)塌(ta)(ta)邊在深度(du)和(he)寬度(du)方向 分(fen)別(bie)減少 80%和(he) 55%。此外,胡(hu)永亮等對雙面研(yan) 磨過程(cheng)中的(de)(de)塌(ta)(ta)邊現(xian)象開展研(yan)究(jiu),分(fen)析了雙面研(yan)磨過 程(cheng)中塌(ta)(ta)邊現(xian)象的(de)(de)產生(sheng)原因(yin),并通過對加(jia)工設備的(de)(de)結(jie)構改進,實現(xian)對塌(ta)(ta)邊的(de)(de)控制(zhi),從而提(ti)(ti)升工件(jian)的(de)(de)平(ping)面度(du)。

image.png

       2.4 雙面研磨工藝參數優化 

       雙面研(yan)(yan)磨機(ji)床中(zhong)(zhong),上下(xia)研(yan)(yan)磨盤(pan),太陽輪及齒圈(quan)(quan)(quan) 以不(bu)(bu)(bu)同(tong)的(de)速(su)度(du)轉(zhuan)(zhuan)動(dong),而(er)不(bu)(bu)(bu)同(tong)的(de)轉(zhuan)(zhuan)速(su)比會導致工(gong)(gong)件與 研(yan)(yan)磨盤(pan)間(jian)的(de)相(xiang)對(dui)運動(dong)軌跡(ji)(ji)(ji)發生(sheng)變化,為使(shi)工(gong)(gong)件與研(yan)(yan) 磨盤(pan)的(de)相(xiang)對(dui)運動(dong)軌跡(ji)(ji)(ji)均(jun)勻,需(xu)要(yao)對(dui)速(su)比進行(xing)(xing)(xing)研(yan)(yan)究。董瑞通過 Matlab 軟件研(yan)(yan)究了不(bu)(bu)(bu)同(tong)齒圈(quan)(quan)(quan)轉(zhuan)(zhuan)速(su)比下(xia) 工(gong)(gong)件的(de)相(xiang)對(dui)運動(dong)軌跡(ji)(ji)(ji),其(qi)選取內外齒圈(quan)(quan)(quan)速(su)比 m,不(bu)(bu)(bu) 同(tong)研(yan)(yan)磨盤(pan)與中(zhong)(zhong)心齒輪轉(zhuan)(zhuan)速(su)比 n,作為參考對(dui)象,給 定運動(dong)參數(shu),在(zai)時(shi)(shi)間(jian) t∈ [0, 5]s 內進行(xing)(xing)(xing),觀察在(zai)不(bu)(bu)(bu) 斷(duan)(duan)變化的(de)齒圈(quan)(quan)(quan)速(su)比情況下(xia),待(dai)加工(gong)(gong)工(gong)(gong)件運動(dong)軌跡(ji)(ji)(ji)的(de) 分(fen)布(bu)曲(qu)線,從而(er)選取軌跡(ji)(ji)(ji)均(jun)勻性、軌跡(ji)(ji)(ji)曲(qu)線曲(qu)率(lv)變 化小和曲(qu)線比較(jiao)平滑(hua)運行(xing)(xing)(xing)復雜情況下(xia)的(de)齒圈(quan)(quan)(quan)速(su)比參 數(shu),結(jie)果如表 1 所示。隨(sui)著大齒圈(quan)(quan)(quan)與小齒圈(quan)(quan)(quan) (中(zhong)(zhong)心 齒輪) 的(de)轉(zhuan)(zhuan)速(su)之(zhi)(zhi)比不(bu)(bu)(bu)斷(duan)(duan)增大接近 3~5 倍時(shi)(shi),運行(xing)(xing)(xing)軌 跡(ji)(ji)(ji)趨(qu)于(yu)平穩的(de)同(tong)時(shi)(shi)整體(ti)突變率(lv)變小、致密性增強;在(zai)二者之(zhi)(zhi)比,m=3 時(shi)(shi),n=5 時(shi)(shi),模(mo)擬軌跡(ji)(ji)(ji)曲(qu)線分(fen)布(bu) 均(jun)勻,整體(ti)運動(dong)效果趨(qu)于(yu)最佳。

image.png

       通過分析了內外齒輪轉速、研磨布轉速對運動 軌跡分布的影響,優化其轉速比,能夠使得運動軌 跡分布均勻。黃軍輝等通過建立 300 mm 硅片雙 面化學機械研磨中硅片上定點相對于上下研磨墊的 運動軌跡方程,實驗證明運動軌跡路徑長度與研磨 去除厚度成正比關系,計算運動軌跡路徑長度確定 研磨墊的轉速以達到上下表面具有相同的研磨速 率。研究結果為 300 mm 硅片雙面化學機械研磨找 出優化工藝參數、提高硅片研磨后表面質量提供了 理論依據。胡曉珍等通過行星輪式雙面研磨的運 動分析, 得到工件相對于研磨盤的速度表達式;在 Preston 方程基礎上,建立了材料去除函數和研磨均 勻性函數; 進行計算機仿真, 討論了不同轉速比對 研磨均勻性的影響;并通過加工實驗驗證了仿真與 實驗結果的一致性,為研磨加工工藝參數的確定提 供理論依據。白立剛等通過數學理論建模與 UG  建模,建立了藍寶石襯底基片雙面研磨的運動模型 并獲得了在三種傳動比情況下行星齒輪上不同點的 軌跡。通過分析研磨軌跡和研磨速度可知在傳動比 為 1 時行星齒輪各點的軌跡為均勻分布的圓形且 速度相等,所有點的運動周期相等而且比其它情況 下的周期短,有利于提高研磨效率和形狀精度,結 果成功地解決了由于行星齒輪內的襯底基片各點處 速度不一樣而導致的平面度差的問題和行星齒輪中 心不能放置藍寶石襯底基片的問題。

       2.5 雙面研磨工藝應用 

       針(zhen)對硬脆(cui)材料(liao)(liao),通過(guo)工藝參(can)數的(de)(de)優(you)化能夠實現 高平面度(du),粗糙度(du)及(ji)低的(de)(de)亞表面損傷層(ceng)厚(hou)度(du),而隨(sui) 著光(guang)學制(zhi)造,IC 制(zhi)造等(deng)產業的(de)(de)發展,對軟脆(cui),甚至(zhi) 是塑性(xing)金屬材料(liao)(liao)同樣提(ti)出了較高的(de)(de)表面質量的(de)(de)要 求。針(zhen)對紅外鍺窗片,喬海紅等(deng)[76]采用雙面研磨工 藝加工,加工后,在直徑 38.5 mm 得晶片上,平面 度(du)為 0.43 光(guang)圈,平行度(du) 2”。 

       針對(dui)(dui)軟脆(cui)晶(jing)(jing)(jing)體鈦(tai)酸鋇、碲(di)鋅鉻等(deng)(deng)材(cai)料(liao)(liao),李國(guo)明等(deng)(deng)開展雙面(mian)研(yan)(yan)磨實(shi)驗(yan),分(fen)析(xi)不同(tong)工(gong)藝參數(shu)對(dui)(dui)鈦(tai)酸 鋇晶(jing)(jing)(jing)片表(biao)面(mian)粗(cu)糙度(du)和材(cai)料(liao)(liao)去(qu)除(chu)率的(de)(de)影(ying)響規(gui)律,并分(fen) 析(xi)了(le)不同(tong)磨料(liao)(liao)加(jia)工(gong)該材(cai)料(liao)(liao)的(de)(de)去(qu)除(chu)機理,最終獲得了(le) 粗(cu)糙度(du) Ra 6 nm 的(de)(de)超光滑表(biao)面(mian)。張文斌等(deng)(deng)研(yan)(yan)究(jiu)了(le) 雙面(mian)研(yan)(yan)磨工(gong)藝中磨拋(pao)液粒(li)度(du)、研(yan)(yan)磨壓力(li)、研(yan)(yan)磨液流(liu) 量和工(gong)作臺轉(zhuan)速對(dui)(dui)晶(jing)(jing)(jing)片表(biao)面(mian)損傷(shang)層深度(du)的(de)(de)影(ying)響,通(tong) 過參數(shu)優化,控(kong)制碲(di)鋅鉻晶(jing)(jing)(jing)片損傷(shang)深度(du)降低到 0.2  μm 以(yi)內。目(mu)前(qian)雙面(mian)研(yan)(yan)磨工(gong)藝的(de)(de)應用仍然有(you)限,主要 是針對(dui)(dui)不易在空氣中變質的(de)(de)晶(jing)(jing)(jing)體材(cai)料(liao)(liao)加(jia)工(gong)。難以(yi)實(shi) 現對(dui)(dui)光學領域有(you)大(da)量需求的(de)(de)磷酸二氫(qing)鉀 (KDP) 晶(jing)(jing)(jing) 體等(deng)(deng)潮解(jie)類材(cai)料(liao)(liao)的(de)(de)加(jia)工(gong)。

       針對(dui)(dui)金屬材(cai)料的(de)(de)雙(shuang)面(mian)研(yan)(yan)(yan)磨(mo) 加(jia)工(gong)(gong)(gong)(gong)(gong),主(zhu)要集中在(zai)對(dui)(dui)不同牌號(hao)的(de)(de)鋼材(cai)進(jin)行加(jia)工(gong)(gong)(gong)(gong)(gong)。DEJA 等(deng)(deng)分(fen)析了(le)(le)雙(shuang)面(mian)研(yan)(yan)(yan)磨(mo)中接觸區域(yu)的(de)(de)溫(wen)度(du)對(dui)(dui)工(gong)(gong)(gong)(gong)(gong) 件(jian)表面(mian)粗糙度(du)以及研(yan)(yan)(yan)磨(mo)盤(pan)(pan)磨(mo)損的(de)(de)影(ying)響(xiang),以 45 鋼為 例,探索了(le)(le)各個加(jia)工(gong)(gong)(gong)(gong)(gong)工(gong)(gong)(gong)(gong)(gong)藝(yi)(yi)參(can)數對(dui)(dui)接觸區域(yu)溫(wen)度(du)的(de)(de)影(ying) 響(xiang),并對(dui)(dui)工(gong)(gong)(gong)(gong)(gong)藝(yi)(yi)進(jin)行了(le)(le)優化(hua)。FENG 等(deng)(deng)采用雙(shuang)面(mian)研(yan)(yan)(yan) 磨(mo)工(gong)(gong)(gong)(gong)(gong)藝(yi)(yi)加(jia)工(gong)(gong)(gong)(gong)(gong)軸(zhou)承滾(gun)子,通過(guo)對(dui)(dui)磨(mo)粒(li)尺寸,研(yan)(yan)(yan)磨(mo)盤(pan)(pan)轉速,游星輪開孔角度(du)等(deng)(deng)工(gong)(gong)(gong)(gong)(gong)藝(yi)(yi)參(can)數進(jin)行優化(hua),實(shi)現了(le)(le) 滾(gun)子圓度(du),直線度(du)及圓柱(zhu)度(du)均優于 2 μm 的(de)(de)加(jia)工(gong)(gong)(gong)(gong)(gong)。針 對(dui)(dui)純(chun)銅(tong)等(deng)(deng)高塑性材(cai)料,PAN 等(deng)(deng)采用雙(shuang)面(mian)研(yan)(yan)(yan)磨(mo)和(he)雙(shuang) 面(mian)化(hua)學機械研(yan)(yan)(yan)磨(mo)的(de)(de)方法加(jia)工(gong)(gong)(gong)(gong)(gong)純(chun)銅(tong)工(gong)(gong)(gong)(gong)(gong)件(jian),解(jie)決了(le)(le)塑性 金屬固(gu)結磨(mo)料研(yan)(yan)(yan)磨(mo)的(de)(de)研(yan)(yan)(yan)磨(mo)盤(pan)(pan)堵塞問題(ti),加(jia)工(gong)(gong)(gong)(gong)(gong)后其平 面(mian)度(du)優于 4 μm,其表面(mian)粗糙度(du)優于 2 nm,表面(mian)殘余 應(ying)力分(fen)布均勻如圖(tu) 18 所示(shi)。

image.png

        3 研磨設備

       基于以上對雙面研磨理論及工藝的研究,雙 面研磨機床也亟需改進,本章通過分析雙面研磨 機床的各個組成部分,分析各部分對工藝的影 響。通過總結目前裝備在壓力加載裝置、轉速比 選擇、以及控制系統方面的研究,分析雙面研磨 機床目前的優勢和缺陷,并對國內外相關機床廠 家的產品進行分析,比較國內外雙面研磨機床的 差距。 

       3.1 雙面研磨機床組成 

       雙(shuang)面研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)機(ji)的(de)組成主要有(you)機(ji)床(chuang)主體、動(dong)力及(ji) 傳動(dong)系統、控制系統和其他部(bu)件(jian),如圖(tu) 19 所示(shi)。機(ji)床(chuang)主體包(bao)括床(chuang)身(shen)、龍(long)門(men)架(jia)、氣缸(gang)、研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)、太 陽輪(lun)、內(nei)齒(chi)(chi)圈、行(xing)星輪(lun)、研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)液供給(gei)及(ji)收集裝(zhuang)置(zhi)(zhi)(zhi) 等。研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)、太陽輪(lun)、內(nei)齒(chi)(chi)圈同軸(zhou)(zhou),太陽輪(lun)、行(xing) 星輪(lun)、內(nei)齒(chi)(chi)圈三者相互嚙(nie)合。床(chuang)身(shen)通常為(wei)鑄件(jian), 可有(you)效吸收機(ji)床(chuang)工作時(shi)(shi)所產生的(de)振動(dong),且具有(you)較(jiao) 好(hao)的(de)剛性(xing)(xing),極大(da)地保證機(ji)床(chuang)的(de)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)精度。龍(long)門(men)架(jia) 安裝(zhuang)于(yu)床(chuang)身(shen)之(zhi)上(shang)(shang)(shang),龍(long)門(men)架(jia)結(jie)構(gou)剛性(xing)(xing)較(jiao)高,穩定性(xing)(xing) 好(hao)。此外還可采用(yong)懸臂(bei)架(jia),懸臂(bei)架(jia)的(de)優點是結(jie)構(gou) 緊(jin)湊。氣缸(gang)安裝(zhuang)于(yu)龍(long)門(men)架(jia)上(shang)(shang)(shang)方,負責上(shang)(shang)(shang)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)的(de) 升降(jiang),也可對(dui)上(shang)(shang)(shang)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)施(shi)加額外壓力。研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)分 為(wei)上(shang)(shang)(shang)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)和下(xia)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan),上(shang)(shang)(shang)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)安裝(zhuang)于(yu)龍(long)門(men)架(jia) 下(xia)方,裝(zhuang)卸工件(jian)時(shi)(shi)升起、工作時(shi)(shi)落下(xia)。中心輪(lun)與 內(nei)齒(chi)(chi)圈同軸(zhou)(zhou),行(xing)星輪(lun)均勻放置(zhi)(zhi)(zhi)在二者之(zhi)間,在二 者帶(dai)動(dong)下(xia)圍繞中心輪(lun)運動(dong)。研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)液供給(gei)裝(zhuang)置(zhi)(zhi)(zhi)將研(yan)(yan)(yan)(yan) 磨(mo)(mo)(mo)(mo)液由上(shang)(shang)(shang)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)小孔注入研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)區域,研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)液收集裝(zhuang)置(zhi)(zhi)(zhi)安裝(zhuang)于(yu)下(xia)研(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)盤(pan)(pan)下(xia)方。操作系統外設安裝(zhuang)于(yu)床(chuang)身(shen) 上(shang)(shang)(shang),用(yong)于(yu)人(ren)機(ji)交(jiao)互。

image.png

image.png

       動力及傳動系統包括主電機、減速箱、傳動 部件、氣泵、砂泵等。主電機一般為單個,通過 減速箱內各級齒輪副減速后,輸出太陽輪、內齒圈、上研磨盤和下研磨盤的獨立運動。傳動部件 有 V 型帶、同步帶等,適合長距離運輸,用于連 接主電機、齒輪箱和各級主軸,并能起到防過載, 簡化內部結構的作用。氣泵主要負責氣缸的供氣。砂泵用于研磨液的供給,通過管道將研磨液輸送到研磨區域。 

       控(kong)制(zhi)系統(tong)包括(kuo)主控(kong)制(zhi)器、電機驅動器、操作系 統(tong)外設和各類傳感器。主控(kong)制(zhi)器、電機驅動器負責 調節電動機轉速(su)和加工(gong)狀(zhuang)態。時(shi)間繼電器、研磨計 數器、壓力傳感器等用(yong)于采(cai)集加工(gong)信息,傳送到主 控(kong)制(zhi)器調節加工(gong)狀(zhuang)態。 

       其他部件(jian)包括修面(mian)(mian)裝置(zhi)、厚度(du)(du)檢測(ce)(ce)裝置(zhi)等。市 面(mian)(mian)上部分雙面(mian)(mian)研(yan)磨(mo)機(ji)(ji)會配備相關(guan)部件(jian),可(ke)進一(yi)步(bu)優 化雙面(mian)(mian)研(yan)磨(mo)機(ji)(ji)的性(xing)能。機(ji)(ji)床修面(mian)(mian)裝置(zhi)用于研(yan)磨(mo)盤(pan)盤(pan) 面(mian)(mian)的修整,可(ke)改(gai)善研(yan)磨(mo)盤(pan)的平面(mian)(mian)度(du)(du)等參數。厚度(du)(du)檢 測(ce)(ce)裝置(zhi)多采用光柵結構,可(ke)測(ce)(ce)量加(jia)工(gong)時工(gong)件(jian)厚度(du)(du), 達到預設厚度(du)(du)后反饋到控制系統,從而停止加(jia)工(gong)。

        3.2 固結磨料研磨墊開發 

       為(wei)保證磨(mo)(mo)粒分布(bu)的(de)(de)(de)均(jun)勻性,實(shi)現(xian)更高的(de)(de)(de)材料(liao)去 除率(lv)和(he)(he)更好(hao)的(de)(de)(de)表面(mian)質(zhi)量,固(gu)結(jie)(jie)磨(mo)(mo)料(liao)經常用于雙面(mian)研(yan) 磨(mo)(mo)工藝中。YU 等(deng)設計了一種(zhong)新研(yan)磨(mo)(mo)盤(pan)同時保證 SiC 晶(jing)片(pian)加(jia)工后的(de)(de)(de)表面(mian)質(zhi)量和(he)(he)面(mian)形精度(du)。研(yan)磨(mo)(mo)盤(pan) 為(wei)環氧樹脂(zhi)與含有(you)金剛石磨(mo)(mo)料(liao)的(de)(de)(de)軟凝膠體結(jie)(jie)合而(er) 成(cheng)的(de)(de)(de)蜂(feng)窩結(jie)(jie)構(gou)如(ru)圖 20 所示,對 50 mm 直徑的(de)(de)(de)碳 化硅晶(jing)片(pian)進行加(jia)工,加(jia)工后翹曲度(du),彎曲度(du),TTV, 表面(mian)粗糙度(du)及亞(ya)表面(mian)缺陷(xian)均(jun)有(you)減小(xiao)。結(jie)(jie)果(guo)表明, 4H-SiC 和(he)(he) 6H-SiC 的(de)(de)(de)表面(mian)粗糙度(du) Ra 隨研(yan)磨(mo)(mo)壓(ya)力(li)的(de)(de)(de) 增(zeng)加(jia)呈(cheng)線性增(zeng)加(jia),但隨轉速的(de)(de)(de)增(zeng)加(jia)呈(cheng)不明顯(xian)的(de)(de)(de)線 性增(zeng)加(jia),但在轉速為(wei) 80 r/min 和(he)(he) 100 r/min 時表面(mian) 粗糙度(du)較大。

image.png

       固結磨料與游離磨料不同,其加工過程中,磨 粒始終固結在研磨盤表面,從而導致在加工一段時 間后,磨粒發生鈍化,從而使得研磨盤的材料去除 效率大大降低,需要通過研磨盤修銳,使新鮮磨粒 露出,因此,固結磨料研磨的效率有所降低。南京 航空航天大學朱永偉教授團隊采用紫外光固化和熱 固化的方式,研制了一系列的樹脂基固結磨料研磨 墊如圖 21 所示。

image.png

       分析了在加工過程中固結磨料研磨墊的磨損特 性,包括摩擦磨損及沖蝕磨損,分析了加工后研磨 墊表面出現釉化的現象,通過優化研磨墊的配方, 孔隙率,開發了具有自修整性能的親水性固結磨料 研磨墊如圖 22 所示,保證了長時間的穩定加工。

image.png

       加工硬脆材料時,由于工件材料的硬度較高,固結磨料加工時,磨粒易發生磨損,從而影響材料 去除,即使采用雙面研磨加工方法,仍然難以保證 較高的材料去除率,為提高材料去除效率,KIM 等提出在固結磨料加工的同時添加游離磨料來 加工藍寶石晶片,如圖 23 所示,實現 1 μm/min 的材料去除率。

image.png

       3.3 雙面研磨機壓力加載裝置 

       雙(shuang)面研(yan)磨機(ji)的(de)壓力(li)(li)加(jia)載(zai)(zai)裝(zhuang)置是(shi)(shi)影響雙(shuang)面研(yan)磨及(ji) 加(jia)工精度的(de)重要組成部分(fen),因此(ci),需要保證(zheng)壓力(li)(li)加(jia) 載(zai)(zai)的(de)精確和穩定。帖(tie)俊平等(deng)提出一種利用稱(cheng)(cheng)重器 和電(dian)(dian)(dian)磁(ci)比(bi)例閥(fa)來(lai)控制(zhi)雙(shuang)面研(yan)磨機(ji)上盤(pan)正壓力(li)(li)的(de)加(jia)載(zai)(zai) 裝(zhuang)置。其在(zai)雙(shuang)面研(yan)磨機(ji)的(de)氣缸(gang)(gang)和太陽(yang)輪之間安裝(zhuang)了 一個(ge)稱(cheng)(cheng)重傳(chuan)(chuan)感器,雙(shuang)向(xiang)電(dian)(dian)(dian)磁(ci)閥(fa)控制(zhi)氣缸(gang)(gang)的(de)雙(shuang)向(xiang)壓力(li)(li), 且正向(xiang)壓力(li)(li)控制(zhi)電(dian)(dian)(dian)磁(ci)閥(fa)為電(dian)(dian)(dian)磁(ci)比(bi)例控制(zhi)閥(fa),反(fan)向(xiang)壓 力(li)(li)調(diao)(diao)節閥(fa)為普通電(dian)(dian)(dian)磁(ci)閥(fa),電(dian)(dian)(dian)磁(ci)比(bi)例閥(fa)的(de)特點(dian)就是(shi)(shi)通 過(guo)調(diao)(diao)節電(dian)(dian)(dian)流(liu)的(de)大(da)小,可(ke)以自動(dong)改變(bian)電(dian)(dian)(dian)磁(ci)比(bi)例閥(fa)的(de)輸 出壓力(li)(li)值。通過(guo)調(diao)(diao)節電(dian)(dian)(dian)磁(ci)比(bi)例閥(fa)可(ke)改變(bian)氣缸(gang)(gang)的(de)正壓力(li)(li),但(dan)上研(yan)磨盤(pan)施加(jia)給工件的(de)正壓力(li)(li)實際值是(shi)(shi)通過(guo) 稱(cheng)(cheng)重傳(chuan)(chuan)感器來(lai)實時測量的(de)。加(jia)載(zai)(zai)裝(zhuang)置的(de)結構(gou)如圖 24 所示。

image.png

       許君等根據傳統產品存在精度差和效率低 的缺陷,采用先進的壓力傳感器、PLC 和氣缸的控 制技術,同時采用數字 PID 控制方法,實現不同模 式的加壓方式。針對傳統機床無法控制氣壓平穩、 無法實時監控的缺點,采用了先進的氣動比例閥對 氣壓進行精密的控制和采用壓力傳感器對氣壓進行 實時的監控,形成一個閉環控制,解決了氣壓的不 平穩現象和無法監控實時氣壓的缺陷。賈云剛等采用氣動控制與 PLC 組成的電、氣控制系統,實現 雙面研磨機研磨壓力的精確控制。采用氣動控制系 統與 PLC 組成的電氣控制系統相結合,PLC 發出指 令控制氣動系統動作,實現了工作過程的自動控制, 該系統采用了氣動控制系統與電氣系統聯合控制, 實現了研磨壓力的精確控制。采用電磁換向閥,換向性能好,控制方便。該設備最大的特點是氣動控 制系統與電氣控制系統聯合組成壓力閉環控制。其 壓力控制精確、研磨精度高、平穩可靠,目前已得 到廣泛應用。ZHANG 等為了準確控制 PID 控制 的參數,在 PID 控制前面加入模糊控制塊,使誤差 和誤差變化率作為模糊控制的輸入,PID 控制參數 作為輸出,根據選定的隸屬函數和模糊規則實時修 正 PID 控制參數,構成自適應模糊 PID 控制。XING 等對雙面研磨機氣動系統進行了建模與仿真。其 通過氣動伺服系統對雙面研磨機上研磨盤壓力進行 精確控制。氣動伺服加載系統包含低摩擦氣缸、壓 力傳感器、氣動伺服閥、儲氣罐、空氣單元和節流 閥。低摩擦氣缸連桿具有高穩定性壓力傳感器,可 準確檢測力反饋負載信號,從而可以精確控制加載 力。HU 等對精密雙面研磨機的壓力控制系統配 備了一種新型電動氣動數字伺服閥。壓力控制系統 的結構為閘門式,頂部和底部板之間的承載由精密 氣缸驅動,以實現穩定的壓力控制。氣缸和伺服電 機由計算機控制系統控制。采用氣動控制系統精密 控制研磨過程中的研磨壓力。氣缸由數字伺服閥控 制。連接氣缸與頂板的壓力傳感器,通過 A/D 轉換 將氣缸的壓力反饋給計算機。從而可以準確地控制 氣缸的壓力。數字伺服閥是氣動控制系統中的關鍵 部件。QIAN 等開發了一種氣動伺服加載系統實 現工件表面壓力的精確控制,加載系統采用了專門 設計的氣動數字伺服閥,通過測量工件上的實際載 荷和表面光潔度的質量來進行驗證。結果表明,載 荷的誤差率小于 5%,可以獲得粗糙度 Ra 為 0.4 nm 的超光滑硅片表面。

       3.4 雙面研磨機控制系統開發 

       雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)機(ji)(ji)(ji)床(chuang)(chuang)的(de)(de)(de)(de)(de)(de)(de)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)與傳統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)(de)(de)(de)(de)數(shu)控(kong)(kong)(kong)機(ji)(ji)(ji)床(chuang)(chuang)控(kong)(kong)(kong) 制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)不(bu)同(tong),需(xu)(xu)要根據(ju)(ju)雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)工(gong)(gong)(gong)藝(yi)的(de)(de)(de)(de)(de)(de)(de)需(xu)(xu)求(qiu)進(jin)行(xing)控(kong)(kong)(kong) 制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)(de)(de)(de)(de)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)。HU 等(deng)開(kai)發了(le)(le)一種新(xin)型(xing)的(de)(de)(de)(de)(de)(de)(de)精(jing)(jing)(jing)(jing)密雙(shuang)(shuang) 面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)機(ji)(ji)(ji),采用(yong)(yong)精(jing)(jing)(jing)(jing)密壓(ya)(ya)(ya)(ya)力(li)(li)(li)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong),并通過(guo)設置(zhi)多 段(duan)工(gong)(gong)(gong)藝(yi),實(shi)現(xian)(xian)對工(gong)(gong)(gong)件(jian)(jian)的(de)(de)(de)(de)(de)(de)(de)高(gao)表面(mian)(mian)(mian)完整(zheng)性加(jia)(jia)工(gong)(gong)(gong)。裴忠開(kai)DPL160 雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)機(ji)(ji)(ji)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)軟(ruan)件(jian)(jian),使用(yong)(yong)工(gong)(gong)(gong)控(kong)(kong)(kong)機(ji)(ji)(ji) 作(zuo)(zuo)為主(zhu)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)器(qi),通過(guo) VB.NET 軟(ruan)件(jian)(jian)平臺(tai)和(he) MS-SQL 數(shu)據(ju)(ju)庫,實(shi)現(xian)(xian)圖形化界面(mian)(mian)(mian)功(gong)能(neng)指標,還使用(yong)(yong)了(le)(le)高(gao)精(jing)(jing)(jing)(jing) 度(du)的(de)(de)(de)(de)(de)(de)(de)位(wei)移傳感(gan)(gan)(gan)器(qi),高(gao)精(jing)(jing)(jing)(jing)度(du)氣(qi)壓(ya)(ya)(ya)(ya)壓(ya)(ya)(ya)(ya)力(li)(li)(li)傳感(gan)(gan)(gan)器(qi),高(gao)精(jing)(jing)(jing)(jing)度(du) 數(shu)字比例閥組(zu)成(cheng)聯合控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong),實(shi)現(xian)(xian)該(gai)機(ji)(ji)(ji)的(de)(de)(de)(de)(de)(de)(de)自(zi)(zi)動(dong)加(jia)(jia) 工(gong)(gong)(gong)及(ji)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)。茅(mao)小(xiao)海(hai)開(kai)發了(le)(le)超精(jing)(jing)(jing)(jing)密研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)機(ji)(ji)(ji) 電(dian)氣(qi)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)。對原有雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)機(ji)(ji)(ji)進(jin)行(xing)了(le)(le)改進(jin),利(li)(li) 用(yong)(yong)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)器(qi)代替工(gong)(gong)(gong)控(kong)(kong)(kong)機(ji)(ji)(ji),通過(guo)對主(zhu)要部件(jian)(jian)選型(xing)、系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong) 硬件(jian)(jian)設計(ji)、軟(ruan)件(jian)(jian)程序(xu)開(kai)發,研(yan)(yan)(yan)(yan)(yan)(yan)(yan)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)了(le)(le)一套實(shi)現(xian)(xian)了(le)(le)人機(ji)(ji)(ji) 交互式操作(zuo)(zuo)式的(de)(de)(de)(de)(de)(de)(de)雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)機(ji)(ji)(ji)智能(neng)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)的(de)(de)(de)(de)(de)(de)(de)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)。并開(kai) 發了(le)(le)一套的(de)(de)(de)(de)(de)(de)(de)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)液(ye)的(de)(de)(de)(de)(de)(de)(de)恒(heng)溫(wen)(wen)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)裝(zhuang)置(zhi),根據(ju)(ju)不(bu)同(tong)的(de)(de)(de)(de)(de)(de)(de)研(yan)(yan)(yan)(yan)(yan)(yan)(yan) 磨(mo)(mo)(mo)(mo)(mo)階段(duan)調整(zheng)不(bu)同(tong)的(de)(de)(de)(de)(de)(de)(de)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)液(ye)溫(wen)(wen)度(du),達(da)(da)到恒(heng)溫(wen)(wen)加(jia)(jia)工(gong)(gong)(gong)的(de)(de)(de)(de)(de)(de)(de)目 的(de)(de)(de)(de)(de)(de)(de),而且在恒(heng)溫(wen)(wen)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)裝(zhuang)置(zhi)中加(jia)(jia)入研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)液(ye)的(de)(de)(de)(de)(de)(de)(de)雜質(zhi)(zhi)過(guo)濾 裝(zhuang)置(zhi),確(que)保(bao)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)液(ye)內(nei)的(de)(de)(de)(de)(de)(de)(de)雜質(zhi)(zhi)不(bu)對硅晶(jing)片的(de)(de)(de)(de)(de)(de)(de)加(jia)(jia)工(gong)(gong)(gong)造成(cheng) 不(bu)良(liang)影響。胡曉(xiao)珍(zhen)等(deng)提(ti)出(chu)并建(jian)立了(le)(le)基于(yu)微機(ji)(ji)(ji)統(tong)(tong)(tong)(tong)(tong)一 控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)(de)(de)(de)(de)解(jie)(jie)決(jue)方案(an)。采用(yong)(yong) Windows 軟(ruan)件(jian)(jian)平臺(tai),圖形 化界面(mian)(mian)(mian)功(gong)能(neng)指示、高(gao)精(jing)(jing)(jing)(jing)度(du)光柵傳感(gan)(gan)(gan)器(qi)、壓(ya)(ya)(ya)(ya)力(li)(li)(li)傳感(gan)(gan)(gan)器(qi)、 數(shu)字閥組(zu)成(cheng)電(dian)氣(qi)聯合控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong),應用(yong)(yong)新(xin)型(xing)電(dian)氣(qi)直(zhi)接(jie) 數(shu)字控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)技術實(shi)現(xian)(xian)該(gai)機(ji)(ji)(ji)的(de)(de)(de)(de)(de)(de)(de)自(zi)(zi)動(dong)加(jia)(jia)工(gong)(gong)(gong)。該(gai)方法(fa)可實(shi)現(xian)(xian) 研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)盤(pan)壓(ya)(ya)(ya)(ya)力(li)(li)(li)精(jing)(jing)(jing)(jing)確(que)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi);研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)盤(pan)穩(wen)態(tai)運行(xing)的(de)(de)(de)(de)(de)(de)(de)高(gao)平穩(wen)度(du);研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)液(ye)溫(wen)(wen)度(du)的(de)(de)(de)(de)(de)(de)(de)實(shi)時檢測和(he)流量的(de)(de)(de)(de)(de)(de)(de)模糊(hu)(hu)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)以(yi)及(ji)微機(ji)(ji)(ji) 自(zi)(zi)動(dong)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)模式的(de)(de)(de)(de)(de)(de)(de)實(shi)現(xian)(xian)。高(gao)峰等(deng)以(yi) NUMPOWER1060 數(shu)控(kong)(kong)(kong)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)為主(zhu)控(kong)(kong)(kong)單(dan)元,結合力(li)(li)(li)- 位(wei)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)和(he)模糊(hu)(hu)推(tui)理的(de)(de)(de)(de)(de)(de)(de)特點,提(ti)出(chu)一種固著(zhu)磨(mo)(mo)(mo)(mo)(mo)料雙(shuang)(shuang)面(mian)(mian)(mian) 研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)壓(ya)(ya)(ya)(ya)力(li)(li)(li)模糊(hu)(hu)自(zi)(zi)整(zheng)定(ding) PID 控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)方法(fa)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)究。利(li)(li)用(yong)(yong)高(gao)精(jing)(jing)(jing)(jing) 度(du)扭(niu)矩傳感(gan)(gan)(gan)器(qi)和(he)力(li)(li)(li)傳感(gan)(gan)(gan)器(qi)對 z 軸(zhou)電(dian)機(ji)(ji)(ji)輸(shu)出(chu)扭(niu)矩與研(yan)(yan)(yan)(yan)(yan)(yan)(yan) 磨(mo)(mo)(mo)(mo)(mo)壓(ya)(ya)(ya)(ya)力(li)(li)(li)之(zhi)間的(de)(de)(de)(de)(de)(de)(de)關系(xi)(xi)(xi)(xi)(xi)進(jin)行(xing)了(le)(le)標定(ding),通過(guo)檢測 z 軸(zhou)輸(shu)出(chu) 扭(niu)矩間接(jie)獲得了(le)(le)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)壓(ya)(ya)(ya)(ya)力(li)(li)(li)的(de)(de)(de)(de)(de)(de)(de)大(da)小(xiao)。根據(ju)(ju) z 軸(zhou)進(jin)給速 度(du)調節因子(zi) uv 對研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)壓(ya)(ya)(ya)(ya)力(li)(li)(li)的(de)(de)(de)(de)(de)(de)(de)影響規(gui)律,建(jian)立了(le)(le)模糊(hu)(hu) 控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)規(gui)則集,設計(ji)了(le)(le)模糊(hu)(hu)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi) PID 算法(fa),保(bao)證了(le)(le)研(yan)(yan)(yan)(yan)(yan)(yan)(yan) 磨(mo)(mo)(mo)(mo)(mo)壓(ya)(ya)(ya)(ya)力(li)(li)(li)的(de)(de)(de)(de)(de)(de)(de)恒(heng)定(ding)。該(gai)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)能(neng)控(kong)(kong)(kong)制(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)(zhi)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)力(li)(li)(li)在加(jia)(jia)工(gong)(gong)(gong)過(guo)程中 處于(yu)適(shi)當范圍并維持穩(wen)定(ding),解(jie)(jie)決(jue)了(le)(le)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)力(li)(li)(li)波動(dong)較大(da) 而導致工(gong)(gong)(gong)件(jian)(jian)表面(mian)(mian)(mian)質(zhi)(zhi)量差(cha)以(yi)及(ji)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)壓(ya)(ya)(ya)(ya)力(li)(li)(li)過(guo)大(da)引起(qi)表面(mian)(mian)(mian) 灼傷(shang)的(de)(de)(de)(de)(de)(de)(de)問題。XING 等(deng)通過(guo) AMESim 建(jian)立氣(qi)動(dong)負 載系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)(de)(de)(de)(de)建(jian)模與仿真(zhen),并給出(chu)優化參數(shu)以(yi)提(ti)高(gao)系(xi)(xi)(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong) 性能(neng),并給出(chu)負載能(neng)力(li)(li)(li)的(de)(de)(de)(de)(de)(de)(de)解(jie)(jie)決(jue)方法(fa)。YANG 等(deng)設 計(ji)了(le)(le)一種雙(shuang)(shuang)面(mian)(mian)(mian)研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)機(ji)(ji)(ji),解(jie)(jie)決(jue)了(le)(le)效率(lv)(lv)和(he)表面(mian)(mian)(mian)質(zhi)(zhi)量難以(yi) 兼顧的(de)(de)(de)(de)(de)(de)(de)問題,研(yan)(yan)(yan)(yan)(yan)(yan)(yan)發的(de)(de)(de)(de)(de)(de)(de)機(ji)(ji)(ji)床(chuang)(chuang)具有工(gong)(gong)(gong)藝(yi)穩(wen)定(ding)、研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)壓(ya)(ya)(ya)(ya)力(li)(li)(li) 大(da)、研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)速度(du)快等(deng)特點,經氧化鋯基板研(yan)(yan)(yan)(yan)(yan)(yan)(yan)磨(mo)(mo)(mo)(mo)(mo)驗(yan)證, 材料去除率(lv)(lv)達(da)(da) 5 μm/h,表面(mian)(mian)(mian)粗糙度(du) Ra 達(da)(da) 1 nm。

       3.5 雙面研磨機生產廠家 

       針(zhen)(zhen)對目(mu)前(qian)形(xing)成(cheng)的(de)(de)(de)(de)雙面(mian)(mian)研磨(mo)(mo)工(gong)(gong)(gong)藝,國(guo)內(nei)(nei)外(wai)多家廠 商研制(zhi)(zhi)了不(bu)同的(de)(de)(de)(de)雙面(mian)(mian)研磨(mo)(mo)機(ji)(ji)(ji)床,本文(wen)選取(qu)典(dian)型的(de)(de)(de)(de)機(ji)(ji)(ji) 床生產廠家進行(xing)(xing)(xing)對比分析,其(qi)機(ji)(ji)(ji)床的(de)(de)(de)(de)功能、加(jia)工(gong)(gong)(gong)精 度(du)(du)等(deng)指(zhi)標均(jun)處于國(guo)際(ji)/國(guo)內(nei)(nei)領先水平。國(guo)外(wai)的(de)(de)(de)(de) PR  HOFFMAN、HAMAI、Melchiorre、LAPMASTER  WOLTERS 等(deng)公(gong)(gong)司(si)研制(zhi)(zhi)的(de)(de)(de)(de)機(ji)(ji)(ji)床精度(du)(du)較高,技(ji)術更為 成(cheng)熟,且各具(ju)特(te)色,分別(bie)在(zai)研磨(mo)(mo)盤(pan)(pan)形(xing)狀,跳動(dong),壓(ya) 力控制(zhi)(zhi)等(deng)方(fang)(fang)(fang)面(mian)(mian)具(ju)有獨特(te)的(de)(de)(de)(de)優勢(shi)。而國(guo)內(nei)(nei)的(de)(de)(de)(de)宇環數(shu)控、 宇晶、方(fang)(fang)(fang)達,海德等(deng)雙面(mian)(mian)研磨(mo)(mo)機(ji)(ji)(ji)床占(zhan)據國(guo)內(nei)(nei)的(de)(de)(de)(de)市場 份額(e)較大,它們(men)根據目(mu)前(qian)加(jia)工(gong)(gong)(gong)的(de)(de)(de)(de)工(gong)(gong)(gong)藝要(yao)求進行(xing)(xing)(xing)了改 善。PR HOFFMAN 公(gong)(gong)司(si)創立于 1938 年(nian),其(qi)機(ji)(ji)(ji)床主 要(yao)針(zhen)(zhen)對 SiC、石英(ying)、光(guang)學、半導體、LED、電(dian)子(zi)、 陶瓷和金屬加(jia)工(gong)(gong)(gong)等(deng)應(ying)用(yong)(yong)的(de)(de)(de)(de)各種制(zhi)(zhi)造加(jia)工(gong)(gong)(gong)需求。以該(gai) 公(gong)(gong)司(si)設計的(de)(de)(de)(de) SERVO RS-7600 型雙面(mian)(mian)研磨(mo)(mo)機(ji)(ji)(ji)為例,該(gai) 設備可(ke)(ke)提供上(shang)盤(pan)(pan)、下(xia)盤(pan)(pan)、太陽輪(lun)和齒圈 4 項(xiang)獨立運 動(dong),并(bing)為上(shang)盤(pan)(pan)和下(xia)盤(pan)(pan)提供獨立的(de)(de)(de)(de)溫度(du)(du)管理。盤(pan)(pan)面(mian)(mian)外(wai) 徑(jing) 1915 mm ,內(nei)(nei)徑(jing) 577 mm ,上(shang)盤(pan)(pan)最(zui)大轉速(su) +/?32.5 r/min,下(xia)盤(pan)(pan)最(zui)大轉速(su)±27 r/min。在(zai)加(jia)工(gong)(gong)(gong)終止(zhi) 時(shi),將行(xing)(xing)(xing)星輪(lun)返回到與(yu)裝載時(shi)相(xiang)同的(de)(de)(de)(de)位置和方(fang)(fang)(fang)向。通(tong)過(guo)(guo)(guo)這種方(fang)(fang)(fang)式,可(ke)(ke)以在(zai)整個加(jia)工(gong)(gong)(gong)過(guo)(guo)(guo)程(cheng)中(zhong)實現單個工(gong)(gong)(gong) 件(jian)的(de)(de)(de)(de)監(jian)控。此外(wai),可(ke)(ke)在(zai)加(jia)工(gong)(gong)(gong)過(guo)(guo)(guo)程(cheng)中(zhong)監(jian)測上(shang)下(xia)盤(pan)(pan)的(de)(de)(de)(de)距 離(li),在(zai)零件(jian)厚度(du)(du)達到目(mu)標厚度(du)(du)時(shi)停止(zhi)加(jia)工(gong)(gong)(gong)。HAMAI 公(gong)(gong)司(si) 1954 年(nian)開始研制(zhi)(zhi)雙面(mian)(mian)研磨(mo)(mo)機(ji)(ji)(ji),經(jing)過(guo)(guo)(guo)多年(nian)的(de)(de)(de)(de)發 展,目(mu)前(qian),其(qi)所有雙面(mian)(mian)研磨(mo)(mo)機(ji)(ji)(ji)均(jun)采用(yong)(yong)流體動(dong)壓(ya)驅動(dong) 軸(zhou)承,通(tong)過(guo)(guo)(guo)油壓(ya)浮起(qi)下(xia)盤(pan)(pan),保證其(qi)在(zai)旋(xuan)轉時(shi)不(bu)發生 振動(dong)如圖(tu) 25 所示,以提高工(gong)(gong)(gong)件(jian)的(de)(de)(de)(de)加(jia)工(gong)(gong)(gong)精度(du)(du)。其(qi)設 計的(de)(de)(de)(de)設備上(shang)盤(pan)(pan)不(bu)旋(xuan)轉,并(bing)可(ke)(ke)以通(tong)過(guo)(guo)(guo)調整行(xing)(xing)(xing)星輪(lun)順(shun)時(shi) 針(zhen)(zhen)或逆時(shi)針(zhen)(zhen)旋(xuan)轉來保持(chi)下(xia)盤(pan)(pan)面(mian)(mian)的(de)(de)(de)(de)平面(mian)(mian)度(du)(du)。

image.png

       Melchiorre 公司成立于 20 世紀 60 年代中期, 其生產的雙面研磨機上盤可浮動,在加工過程中可 監測零件厚度,在達到預設厚度后停止加工,分辨 率可達到 0.1 μm。加工后零件可達到平面度小于 0.5 μm,平行度小于 1 μm,表面粗糙度 Ra 小于 0.01 μm 的水平。LAPMASTER WOLTERS 公司于 1948 年創立,其所生產的雙面精磨機 AC2000 搭載 高精密氣動壓力系統、非接觸式微測量控制器、強 力驅動技術等。高精密氣動壓力系統可通過氣缸對 盤面施加外力,用以改善研磨盤的面形精度如圖 26所示。其對工件的施壓方式是通過杠桿對上盤施加 拉力或壓力,實現研磨壓力的大范圍調節。上下精 磨盤均采用伺服電機直驅的方式保證加工過程中轉 動的穩定性,精磨盤的溫度控制和潤滑油冷卻由 PID 控制器精準控制。PID 控制器對潤滑油冷卻控 制精確高達±0.5 ℃。對精磨盤冷卻水控制精度可達 ±0.2 ℃。為優化冷卻液作用,在潤滑油流入設備時 測量其實際溫度并將測量值反饋給冷卻系統,以確 保精磨盤幾何形狀的穩定性和可重復性。精磨盤也 可在線測量工件厚度。

image.png

       國內自主研制的雙面研磨機品牌普遍創立于本 世紀初,通過學習國外的雙面研磨技術,研制的機 床與國外機床能實現的功能相近,但由于發展時間 較短,機床得結構優化設計,穩定性以及加工精度 與國外機床尚存在一定差距。宇環數控機床股份有 限公司成立于 2004 年,其所生產的 YHM77110 型 雙面研磨機配備四臺電機,分別控制上盤、下盤、 太陽輪和內齒圈的運動,上下表面材料去除率及比 值可調。采用龍門式結構,可承載較大壓力,上盤 可通過液壓系統加壓,最大可提供 15 000 N 的研磨 壓力,加工過程中可實時監測壓力并進行調節。雙 絲桿導軌壓力加載系統和光柵尺的精確閉環控制系 統,能較好地保證研磨過程及質量的穩定性。配備 恒溫冷卻系統,傳感器自動檢測研磨液溫度并反饋 至控制系統,可自動調節研磨液溫度。采用彈簧加 萬向節軸承組成的上盤浮動結構,提高了大壓力研 磨加載的穩定性與均勻性。

       宇晶機(ji)(ji)器股份(fen)有(you)限公(gong)司(si)(si)成立于(yu) 1997 年(nian),其生產 的 YJ-16BY/PE 型(xing)雙(shuang)面(mian)研磨機(ji)(ji)床結構緊湊,設備采(cai)(cai) 用單電(dian)機(ji)(ji)驅動(dong)(dong),電(dian)機(ji)(ji)帶動(dong)(dong)上(shang)(shang)盤(pan)(pan)、下(xia)盤(pan)(pan)、太(tai)陽(yang)輪和內(nei) 齒(chi)圈同時運(yun)動(dong)(dong)。以(yi)點動(dong)(dong)控制(zhi)方式控制(zhi)內(nei)齒(chi)圈升降(jiang), 使操(cao)作者能(neng)(neng)自(zi)由(you)控制(zhi)齒(chi)圈升降(jiang)高(gao)度(du)(du)。電(dian)機(ji)(ji)采(cai)(cai)用變頻 調(diao)速器控制(zhi),能(neng)(neng)在有(you)效設置(zhi)范圍內(nei)以(yi)任意速度(du)(du)工(gong)作、 停止、加減速,過(guo)程(cheng)平(ping)(ping)穩,無抖動(dong)(dong)、無沖(chong)擊(ji)。并且(qie) 太(tai)陽(yang)輪有(you)兩檔速度(du)(du)調(diao)整,可(ke)實現游星(xing)輪的正、反轉, 實現盤(pan)(pan)面(mian)的修(xiu)(xiu)(xiu)(xiu)整。深圳方達(da)(da)研磨技術有(you)限公(gong)司(si)(si)成立 于(yu) 2007 年(nian),受到(dao)單面(mian)車刀(dao)修(xiu)(xiu)(xiu)(xiu)整盤(pan)(pan)面(mian)面(mian)形的啟發,在雙(shuang)面(mian)研磨機(ji)(ji)上(shang)(shang)實現了上(shang)(shang)下(xia)盤(pan)(pan)的車刀(dao)修(xiu)(xiu)(xiu)(xiu)面(mian)功能(neng)(neng)。所生 產的 FD13-6B 型(xing)雙(shuang)面(mian)研磨機(ji)(ji)如(ru)圖 27 所示(shi),修(xiu)(xiu)(xiu)(xiu)面(mian)機(ji)(ji) 采(cai)(cai)用伺服馬達(da)(da)驅動(dong)(dong),能(neng)(neng)確保油壓(ya)懸(xuan)浮導軌(gui)滑動(dong)(dong)平(ping)(ping)穩, 平(ping)(ping)面(mian)修(xiu)(xiu)(xiu)(xiu)整效果較好。采(cai)(cai)用四個電(dian)機(ji)(ji)同步拖(tuo)動(dong)(dong),變速 范圍更(geng)廣,運(yun)動(dong)(dong)精度(du)(du)更(geng)高(gao),響應(ying)速度(du)(du)更(geng)快,能(neng)(neng)適應(ying) 不(bu)同研磨材料及(ji)研磨工(gong)藝(yi)的要(yao)求,可(ke)實現軟啟動(dong)(dong)、 軟停止,調(diao)速穩定,沖(chong)擊(ji)小。具有(you)遠程(cheng)監控,遠程(cheng) 維護功能(neng)(neng)。可(ke)選配光柵厚度(du)(du)控制(zhi)系統(tong),加工(gong)后(hou)的產 品厚度(du)(du)誤差為±0.002 mm。下(xia)盤(pan)(pan)端(duan)面(mian)跳(tiao)(tiao)動(dong)(dong) 0.05 mm, 上(shang)(shang)下(xia)盤(pan)(pan)平(ping)(ping)面(mian)度(du)(du) 0.02 mm,太(tai)陽(yang)輪徑(jing)向跳(tiao)(tiao)動(dong)(dong) 0.06 mm, 齒(chi)圈徑(jing)向跳(tiao)(tiao)動(dong)(dong) 0.12 mm。修(xiu)(xiu)(xiu)(xiu)正輪修(xiu)(xiu)(xiu)(xiu)研后(hou)平(ping)(ping)行度(du)(du)、平(ping)(ping) 面(mian)度(du)(du)可(ke)達(da)(da) 0.0035 mm,加工(gong)件平(ping)(ping)面(mian)度(du)(du)、平(ping)(ping)行度(du)(du)可(ke)達(da)(da) 0.003 mm/Φ100 mm。

image.png

       深圳市海德精密機械有限公司成立于 2012 年, 所生產的 HD-16B 型雙面研磨機采用一次成型主 體,可保證整機具有較好的剛度。上盤系統采用獨 創的三點平衡系統,保證了上盤落下時與下盤的平 行度。內齒圈、太陽輪、液盆同步齒輪抬升,可在 任意位置自鎖。供液系統采用雙通道冷卻,可有效 降低研磨過程中盤面的溫度。傳動系統采用三電機 聯合拖動,變頻調速,可實現軟啟動、軟停止。下 研磨盤跳動 0.05 mm ,修正輪修正平行度 <0.005 mm,太陽輪徑向跳動 0.12 mm,內齒圈徑向 跳動 0.2 mm。

       3.6 國內外雙面研磨機床對比 

       綜(zong)上所(suo)述,國(guo)外的(de)(de)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)廠商(shang)將(jiang)研(yan)磨(mo)(mo)(mo)盤(pan)(pan)(pan)恒溫(wen)(wen),壓 力控(kong)制(zhi),盤(pan)(pan)(pan)面(mian)磨(mo)(mo)(mo)損,厚度(du)測量等功(gong)能(neng)集(ji)成(cheng)到(dao)雙(shuang)面(mian)研(yan) 磨(mo)(mo)(mo)機(ji)(ji)(ji)(ji)上,保證加(jia)(jia)工(gong)(gong)(gong)過程中工(gong)(gong)(gong)件的(de)(de)面(mian)形精(jing)度(du),加(jia)(jia)工(gong)(gong)(gong)后, 能(neng)夠實現(xian)的(de)(de)加(jia)(jia)工(gong)(gong)(gong)精(jing)度(du)較(jiao)高,其加(jia)(jia)工(gong)(gong)(gong)精(jing)度(du)可以達(da)到(dao)亞 微(wei)米級(ji),而(er)國(guo)內(nei)的(de)(de)雙(shuang)面(mian)研(yan)磨(mo)(mo)(mo)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)雖(sui)然也集(ji)成(cheng)了恒溫(wen)(wen) 研(yan)磨(mo)(mo)(mo)盤(pan)(pan)(pan),盤(pan)(pan)(pan)面(mian)修整裝(zhuang)置等功(gong)能(neng),在(zai)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)各個模塊(kuai)的(de)(de) 功(gong)能(neng)上與(yu)國(guo)外機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)接(jie)近,但(dan)是(shi)加(jia)(jia)工(gong)(gong)(gong)精(jing)度(du)略有不足, 僅(jin)能(neng)在(zai)尺寸較(jiao)小工(gong)(gong)(gong)件上達(da)到(dao)微(wei)米級(ji)面(mian)形精(jing)度(du)。目前(qian) 國(guo)內(nei)的(de)(de)雙(shuang)面(mian)研(yan)磨(mo)(mo)(mo)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)定(ding)價(jia)(jia)(jia)普遍在(zai)幾(ji)萬(wan)到(dao)幾(ji)十(shi)萬(wan)元(yuan)(yuan)(yuan), 隨(sui)著盤(pan)(pan)(pan)面(mian)直徑的(de)(de)增大和功(gong)能(neng)的(de)(de)增加(jia)(jia),機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)的(de)(de)售價(jia)(jia)(jia)也 隨(sui)之(zhi)提升(sheng),但(dan)是(shi),與(yu)國(guo)外機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)相比,其價(jia)(jia)(jia)格(ge)尚存在(zai) 較(jiao)大差距(ju),國(guo)外機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)的(de)(de)價(jia)(jia)(jia)格(ge)普遍在(zai)幾(ji)百萬(wan)元(yuan)(yuan)(yuan)。以 LAPMASTER WOLTERS 公司的(de)(de)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)為例,其研(yan)磨(mo)(mo)(mo) 盤(pan)(pan)(pan)直徑1 m左右的(de)(de)雙(shuang)面(mian)研(yan)磨(mo)(mo)(mo)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)報價(jia)(jia)(jia)超過300萬(wan)元(yuan)(yuan)(yuan), 而(er)國(guo)內(nei)某品牌的(de)(de)相同(tong)盤(pan)(pan)(pan)面(mian)直徑的(de)(de)機(ji)(ji)(ji)(ji)型售價(jia)(jia)(jia)不足 30 萬(wan)元(yuan)(yuan)(yuan)。價(jia)(jia)(jia)格(ge)的(de)(de)巨大差距(ju)是(shi)由于(yu)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)整機(ji)(ji)(ji)(ji)結構的(de)(de)優化(hua) 設計,加(jia)(jia)工(gong)(gong)(gong)的(de)(de)穩定(ding)性(xing),加(jia)(jia)工(gong)(gong)(gong)精(jing)度(du)等因素導(dao)致的(de)(de),而(er) 目前(qian)國(guo)內(nei)的(de)(de)雙(shuang)面(mian)研(yan)磨(mo)(mo)(mo)機(ji)(ji)(ji)(ji)在(zai)相關方(fang)面(mian)尚存在(zai)較(jiao)大差 距(ju)。不同(tong)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)廠商(shang)生產(chan)的(de)(de)雙(shuang)面(mian)研(yan)磨(mo)(mo)(mo)機(ji)(ji)(ji)(ji)床(chuang)(chuang)(chuang)具(ju)體(ti)參(can)數比 較(jiao)如表 2 所(suo)示,從表 2 中分(fen)析,國(guo)內(nei)與(yu)國(guo)外裝(zhuang)備的(de)(de) 差距(ju)主要如下所(suo)述。

image.png

       (1) 加工過程中上下盤間隙沒有得到有效控 制,從而導致無法實時得知研磨盤的磨損情況,從 而影響工件的面形精度。

        (2) 國內機床目前(qian)只是仿造國外機床進(jin)行盤(pan)面 冷卻功能(neng)的設計,而未能(neng)真正的實現對加(jia)工(gong)過程中 盤(pan)面溫度的準確(que)控制,難以保證研磨盤(pan)溫度在理想 水平,從而影響加(jia)工(gong)精度。

        (3) 目(mu)前(qian)國(guo)內的機(ji)床(chuang)普遍采用機(ji)械主軸(zhou)來(lai)驅動(dong)(dong) 研(yan)磨(mo)盤(pan)(pan),使得研(yan)磨(mo)盤(pan)(pan)的跳(tiao)動(dong)(dong)無(wu)法得到避免(mian),在加工(gong) 過(guo)(guo)程(cheng)中(zhong),研(yan)磨(mo)盤(pan)(pan)的跳(tiao)動(dong)(dong)會直接影響(xiang)到工(gong)件(jian)的面(mian)(mian)形精(jing) 度,雖(sui)然提出了車刀(dao)修面(mian)(mian)的方法提升(sheng)研(yan)磨(mo)盤(pan)(pan)的面(mian)(mian)形 精(jing)度,但是無(wu)法保證(zheng)加工(gong)過(guo)(guo)程(cheng)中(zhong)研(yan)磨(mo)盤(pan)(pan)的端(duan)面(mian)(mian)跳(tiao)動(dong)(dong), 而國(guo)外機(ji)床(chuang)采用液體靜(jing)壓(ya)主軸(zhou),保證(zheng)了加工(gong)過(guo)(guo)程(cheng)中(zhong) 研(yan)磨(mo)盤(pan)(pan)的平穩,從(cong)而減小(xiao)由于跳(tiao)動(dong)(dong)造成的誤差。

        (4) 目前國內機床(chuang)的(de)(de)壓(ya)(ya)力加(jia)載普遍存在精度不 高(gao)的(de)(de)問題,雖然加(jia)入壓(ya)(ya)力傳感器,但是尚未實現(xian)閉(bi) 環(huan)的(de)(de)壓(ya)(ya)力控(kong)制(zhi),使得在加(jia)工過程(cheng)中(zhong),隨著(zhu)去(qu)離子水 等冷卻液(ye)的(de)(de)加(jia)入,而導致壓(ya)(ya)力發生變化,從而影響 工件表面材(cai)料去(qu)除的(de)(de)均勻(yun)性而國外機床(chuang)采用(yong)高(gao)精度 壓(ya)(ya)力傳感器閉(bi)環(huan)控(kong)制(zhi)的(de)(de)滾珠絲杠(gang)的(de)(de)運動以(yi)施(shi)加(jia)壓(ya)(ya)力,實現(xian)±1 kg 的(de)(de)壓(ya)(ya)力控(kong)制(zhi)。

       國(guo)(guo)內雙面(mian)研(yan)磨機(ji)的(de)(de)設(she)計(ji)制(zhi)(zhi)造(zao)逐漸走向成熟(shu),機(ji) 床(chuang)集成的(de)(de)功能與國(guo)(guo)外(wai)機(ji)床(chuang)的(de)(de)差(cha)距逐漸減(jian)小(xiao),而加工(gong) 工(gong)件的(de)(de)面(mian)形精度,機(ji)床(chuang)的(de)(de)穩定性等指標仍與國(guo)(guo)外(wai)機(ji) 床(chuang)存在較大差(cha)距,主要是因為雖然國(guo)(guo)內機(ji)床(chuang)廠家借 鑒國(guo)(guo)外(wai)機(ji)床(chuang)的(de)(de)設(she)計(ji),實現了對(dui)研(yan)磨壓(ya)力、研(yan)磨盤(pan)溫 度等參數的(de)(de)控(kong)制(zhi)(zhi),但是并(bing)未實現對(dui)研(yan)磨機(ji)性能的(de)(de)提 升,更多停留(liu)在對(dui)各種功能的(de)(de)模仿,而缺(que)少面(mian)向性 能的(de)(de)設(she)計(ji)與制(zhi)(zhi)造(zao)。

       4 結論與展望
       4.1 結論 

       雙面(mian)(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)工(gong)(gong)(gong)藝(yi)的(de)研(yan)(yan)(yan)(yan)究(jiu)的(de)發展如圖(tu) 28 所示,初 期主要集中(zhong)(zhong)于加(jia)工(gong)(gong)(gong)硬脆材料(liao),分(fen)(fen)析了雙面(mian)(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)工(gong)(gong)(gong)藝(yi) 中(zhong)(zhong)的(de)材料(liao)去(qu)除機理(li),并建立了壓(ya)力分(fen)(fen)布和(he)工(gong)(gong)(gong)件(jian)運動 的(de)理(li)論(lun)模型,實(shi)(shi)現(xian)對工(gong)(gong)(gong)件(jian)表面(mian)(mian)(mian)(mian)材料(liao)的(de)均(jun)勻(yun)去(qu)除;針 對晶圓、襯底等平面(mian)(mian)(mian)(mian)件(jian)開(kai)(kai)展工(gong)(gong)(gong)藝(yi)優(you)化實(shi)(shi)驗(yan),實(shi)(shi)現(xian)高平面(mian)(mian)(mian)(mian)度,低表面(mian)(mian)(mian)(mian)粗糙度,近無損傷的(de)表面(mian)(mian)(mian)(mian)。通(tong)過對 雙面(mian)(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)機床的(de)加(jia)載(zai)裝(zhuang)置展開(kai)(kai)探索(suo),實(shi)(shi)現(xian)了加(jia)工(gong)(gong)(gong)過 程(cheng)中(zhong)(zhong)壓(ya)力加(jia)載(zai)的(de)穩(wen)定性(xing),并實(shi)(shi)現(xian)對壓(ya)力的(de)精(jing)確控制;通(tong)過調整(zheng)機床中(zhong)(zhong)太陽輪、齒圈、上(shang)下研(yan)(yan)(yan)(yan)磨(mo)盤的(de)速(su)比(bi), 優(you)化工(gong)(gong)(gong)件(jian)表面(mian)(mian)(mian)(mian)材料(liao)去(qu)除均(jun)勻(yun)性(xing);通(tong)過開(kai)(kai)發雙面(mian)(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo) 機床控制系統,實(shi)(shi)現(xian)機床的(de)自動化加(jia)工(gong)(gong)(gong)。而目(mu)前國(guo)(guo) 外(wai)的(de)雙面(mian)(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)裝(zhuang)備(bei)從(cong)加(jia)工(gong)(gong)(gong)精(jing)度和(he)穩(wen)定性(xing)上(shang),要明(ming)顯(xian) 比(bi)國(guo)(guo)內的(de)雙面(mian)(mian)(mian)(mian)研(yan)(yan)(yan)(yan)磨(mo)裝(zhuang)備(bei)更先(xian)進(jin)。

image.png

       4.2 雙面研磨技術發展趨勢 

       雙(shuang)面(mian)研(yan)(yan)磨(mo)工(gong)藝與裝備經歷幾十(shi)年的(de)發(fa)展(zhan)日趨成 熟,但(dan)是(shi)在國(guo)防(fang)、光學精(jing)密制造等領(ling)域仍然具有巨(ju) 大發(fa)展(zhan)潛力。此外,目前(qian)的(de)雙(shuang)面(mian)研(yan)(yan)磨(mo)系(xi)統對(dui)操作人(ren) 員的(de)依賴性強,亟需開發(fa)智能雙(shuang)面(mian)研(yan)(yan)磨(mo)系(xi)統,如圖 29 所示。其(qi)中,在雙(shuang)面(mian)研(yan)(yan)磨(mo)工(gong)藝方面(mian),亟需開展(zhan)以 下幾個方面(mian)的(de)研(yan)(yan)究。

        (1) 弱(ruo)剛性(xing)構件的亞微(wei)米級(ji)面形精度的加工。

       針對(dui)硬(ying)脆材料(liao)的(de)(de)加工,雙面(mian)(mian)研磨工藝已日趨(qu)成 熟(shu),而針對(dui)于塑(su)性(xing)(xing)(xing)金屬材料(liao),尤其是弱剛(gang)性(xing)(xing)(xing)構(gou)(gou)件的(de)(de) 加工,目前仍存在(zai)(zai)挑(tiao)戰。弱剛(gang)性(xing)(xing)(xing)構(gou)(gou)件的(de)(de)面(mian)(mian)形(xing)精度(du)還 無法(fa)達到亞微米級。這(zhe)是因為(wei)在(zai)(zai)加工過程中,弱剛(gang) 性(xing)(xing)(xing)構(gou)(gou)件內部殘(can)余應力(li)釋(shi)放,會發生嚴重的(de)(de)變形(xing),從 而影響工件的(de)(de)平面(mian)(mian)度(du)和(he)平行度(du),相(xiang)比于硬(ying)脆材料(liao), 其對(dui)于工藝的(de)(de)要求更高(gao)。 

       (2) 軟脆晶體材料的雙面研磨加工(gong)。 

       針(zhen)對常(chang)見的(de)軟脆(cui)晶體材料(liao),雙(shuang)面研(yan)磨加(jia)工(gong)的(de)應 用(yong)(yong)較少,主要是因為其(qi)在(zai)加(jia)工(gong)過程(cheng)中容易發(fa)生碎裂(lie) 等現象,而(er)且(qie)在(zai)研(yan)磨過程(cheng)中易出(chu)現表面缺陷,距光 學應用(yong)(yong)要求尚存在(zai)較大差距。且(qie)部分軟脆(cui)晶體為易 潮(chao)解晶體,其(qi)加(jia)工(gong)對環境的(de)溫(wen)度及濕度要求極(ji)高, 而(er)目前的(de)雙(shuang)面研(yan)磨工(gong)藝無法實現對于(yu)溫(wen)度及濕度的(de) 控(kong)制,因此對于(yu)易潮(chao)解晶體的(de)雙(shuang)面研(yan)磨的(de)研(yan)究有待開展。 

       (3) 光學(xue)曲面元件的(de)雙面研磨加工。 

       近(jin)年來,浙(zhe)江工(gong)業大(da)(da)學袁巨龍教授團隊[100-101] 針(zhen)對圓柱或(huo)球體軸(zhou)承(cheng)滾子的(de)(de)雙(shuang)面加工(gong)開展相關研 究,但除此之外,雙(shuang)面研磨(mo)加工(gong)對象僅限平面工(gong)件(jian), 光學透鏡等需求量較(jiao)大(da)(da)的(de)(de)曲(qu)面光學元(yuan)件(jian),也(ye)亟需進 行(xing)雙(shuang)面研磨(mo)工(gong)藝(yi)的(de)(de)研究。

image.png

       (4) 智能雙面研磨工藝的開發。 

       近(jin) 20 年(nian)來,對(dui)于雙面研(yan)磨工藝(yi)的(de)研(yan)究(jiu)較為(wei)廣 泛(fan),加工的(de)材(cai)料也從單晶硅、藍寶石、SiC 等(deng)硬脆 晶體材(cai)料向 45#鋼(gang)、純銅等(deng)金(jin)屬材(cai)料發展。然而, 在(zai)對(dui)不同材(cai)料進行雙面研(yan)磨加工時(shi),需要對(dui)加工工藝(yi)進行重新優(you)化。如(ru)果能(neng)夠對(dui)前人的(de)研(yan)究(jiu)數據進行 總結,并形(xing)成工藝(yi)數據庫,建立智能(neng)雙面研(yan)磨工藝(yi) 算法,實現對(dui)工藝(yi)參(can)數的(de)智能(neng)優(you)化,將會極大地降 低試(shi)錯(cuo)成本,提高效率,擺脫(tuo)雙面研(yan)磨工藝(yi)對(dui)操作 人員的(de)技(ji)術要求。因(yin)此,亟需開(kai)發智能(neng)雙面研(yan)磨 工藝(yi)。

       此外(wai),在裝(zhuang)備(bei)方面,雙(shuang)面研磨(mo)(mo)裝(zhuang)備(bei)已(yi)經很難滿 足光(guang)學、半導(dao)體(ti)等(deng)產業(ye)對加工精度的極端(duan)要求,目(mu) 前(qian)裝(zhuang)備(bei)對操作人員的依(yi)賴性較強,機床的智能化(hua)水(shui) 平較低,因此,雙(shuang)面研磨(mo)(mo)裝(zhuang)備(bei)的未(wei)來(lai)發展(zhan)趨勢包括 以下(xia)幾點。 

       (1) 加工(gong)過(guo)程中關鍵工(gong)藝參數(shu)的(de)實時(shi)獲取與控制(zhi)。 

       目前的(de)(de)(de)雙面(mian)研(yan)磨(mo)機床,在(zai)加(jia)工(gong)過程中,工(gong)件在(zai) 游(you)星輪內的(de)(de)(de)運(yun)動難(nan)以實(shi)時觀測,無法獲得具體的(de)(de)(de)運(yun)動數據(ju)。研(yan)磨(mo)過程中工(gong)件表面(mian)局部受力情況難(nan)以測量,所施加(jia)載荷的(de)(de)(de)準確度(du)有(you)待提高。缺乏更高效、 更精確的(de)(de)(de)研(yan)磨(mo)盤(pan)溫度(du)調(diao)節系統,研(yan)磨(mo)盤(pan)受熱形變程 度(du)難(nan)以量化及(ji)控制。缺乏研(yan)磨(mo)盤(pan)面(mian)型的(de)(de)(de)定量檢測和(he)修整(zheng)方案(an)。難(nan)以實(shi)現(xian)研(yan)磨(mo)過程中工(gong)件厚度(du)的(de)(de)(de)測量。 

       因(yin)此,亟需研(yan)(yan)制新(xin)型的(de)(de)(de)智(zhi)(zhi)能雙面(mian)研(yan)(yan)磨(mo)機(ji)床(chuang)如圖 29 智(zhi)(zhi)能雙面(mian)研(yan)(yan)磨(mo)裝備(bei)所示,通(tong)過多傳(chuan)感器的(de)(de)(de)引入(ru), 實(shi)現(xian)對(dui)各個參數(shu)的(de)(de)(de)在(zai)(zai)線監測(ce)與實(shi)時(shi)調節,實(shi)現(xian)智(zhi)(zhi)能 化加(jia)工(gong)(gong)(gong)。首先需要(yao)通(tong)過合(he)適的(de)(de)(de)方法將加(jia)工(gong)(gong)(gong)過程可視 化,獲取(qu)工(gong)(gong)(gong)件(jian)在(zai)(zai)游(you)星輪內具體的(de)(de)(de)運(yun)動數(shu)據,從(cong)而(er)(er)實(shi) 現(xian)對(dui)工(gong)(gong)(gong)件(jian)局部(bu)材料(liao)去除率的(de)(de)(de)控制。加(jia)裝合(he)適的(de)(de)(de)壓力 傳(chuan)感器,采集加(jia)工(gong)(gong)(gong)過程中(zhong)各部(bu)分的(de)(de)(de)局部(bu)壓力,從(cong)而(er)(er) 分析(xi)研(yan)(yan)磨(mo)盤面(mian)型對(dui)加(jia)工(gong)(gong)(gong)的(de)(de)(de)影響。設(she)(she)計(ji)精(jing)準(zhun)的(de)(de)(de)加(jia)工(gong)(gong)(gong)區 域溫度采集裝置,及時(shi)收(shou)集溫度信(xin)息,反饋至系統(tong), 并通(tong)過冷卻系統(tong)合(he)理控制研(yan)(yan)磨(mo)盤溫度,以減少研(yan)(yan)磨(mo) 盤受熱變(bian)形。設(she)(she)計(ji)準(zhun)確的(de)(de)(de)面(mian)型測(ce)量裝置及修整裝置, 減小(xiao)研(yan)(yan)磨(mo)盤自(zi)身幾何(he)精(jing)度不足而(er)(er)造成的(de)(de)(de)影響。設(she)(she)計(ji) 合(he)理的(de)(de)(de)厚度測(ce)量裝置,對(dui)加(jia)工(gong)(gong)(gong)過程中(zhong)工(gong)(gong)(gong)件(jian)的(de)(de)(de)厚度進 行實(shi)時(shi)測(ce)量。

        (2) 智能雙面研(yan)(yan)磨機(ji)床的研(yan)(yan)制。 

       在實(shi)(shi)(shi)(shi)現(xian)智能(neng)控制(zhi)(zhi)的(de)基礎上(shang),提取加(jia)(jia)工(gong)(gong)過程中的(de) 工(gong)(gong)藝數據(ju),通過數字孿生(sheng)(sheng)技術,在數字空間搭(da)建孿 生(sheng)(sheng)體(ti),施加(jia)(jia)各種預設的(de)工(gong)(gong)況條件(jian)進行測(ce)試(shi),在孿生(sheng)(sheng) 體(ti)內以近(jin)乎為零的(de)實(shi)(shi)(shi)(shi)際成本完成虛擬(ni)測(ce)試(shi),不斷調 試(shi)參數直至滿足(zu)實(shi)(shi)(shi)(shi)際加(jia)(jia)工(gong)(gong)要求,再將測(ce)試(shi)結果方案 轉(zhuan)移至實(shi)(shi)(shi)(shi)際環境(jing)進行實(shi)(shi)(shi)(shi)驗。尤其是(shi)針(zhen)對弱剛性構(gou)件(jian) 和軟(ruan)脆(cui)晶體(ti)材料,通過數字孿生(sheng)(sheng)技術,實(shi)(shi)(shi)(shi)現(xian)在加(jia)(jia)工(gong)(gong) 前預測(ce)工(gong)(gong)件(jian)的(de)變形(xing)和碎裂的(de)情況,大幅減少(shao)實(shi)(shi)(shi)(shi)際測(ce) 試(shi)環境(jing)的(de)損(sun)耗,有效降低人(ren)工(gong)(gong)試(shi)錯的(de)成本,提升成 品率,真正實(shi)(shi)(shi)(shi)現(xian)智能(neng)制(zhi)(zhi)造。

來源:機械工程學報

作(zuo)者:郭江 潘(pan)博 連佳樂 楊(yang)哲 劉歡(huan) 高菲 康(kang)仁科

(大連理工大學精(jing)密與特種(zhong)加工教育部(bu)重(zhong)點實(shi)驗室 大連 116024)

  ① 凡本網注明"來源:磨料磨具網"的所有作品,均為河南遠發信息技術有限公司合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明"來源:磨料磨具網"。違反上述聲明者,本網將追究其相關法律責任。
② 凡本網注明"來源:XXX(非磨料磨具網)"的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。
③ 如因作品內容、版權和其它問題需要同本網聯系的,請在30日內進行。
※ 聯系電話:0371-67667020
贊(0) 收藏(0)  分享到11